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ABSTRACT
Many websites rank user-generated content (UGC) using
viewer votes, displaying higher quality contributions more
prominently and suppressing lower quality ones. Such an
allocation of attention constitutes a mechanism, which can
influence the quality of content elicited from attention-
motivated contributors. In this paper, we analyze equi-
librium behavior in the widely used rank-order mechanism,
where contributions are allocated positions on the page in
decreasing order of their ratings, and the proportional mech-
anism which distributes attention in proportion to the num-
ber of positive ratings, in a game-theoretic model where
agents are motivated by attention and the cost of making
a contribution is increasing in its quality.

The rank-order mechanism always possesses a symmet-
ric mixed strategy equilibrium in which all agents decide
whether to contribute with the same probability, and ran-
domly draw a quality from a common distribution condi-
tional on participating. We investigate equilibrium behav-
ior in the limit of diverging attention, and show that the
lowest quality that can arise in a mixed strategy equilib-
rium of the rank-order mechanism becomes optimal as the
amount of available attention diverges. We then compare
equilibrium qualities in the proportional and the rank-order
mechanism and show that the probability an agent chooses a
higher quality in the rank-order mechanism than in the pro-
portional mechanism goes to one as the amount of available
attention diverges. Thus the rank-order mechanism almost
always incentivizes higher quality contributions in equilib-
rium than the proportional mechanism.
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1. INTRODUCTION
There is a proliferation of user contributed content on the

Web, and a multitude of instances where user contributed
content adds significant value to websites. The product re-
views written by users on Amazon, for instance, are a very
valuable component of the service that Amazon provides,
while question-and-answer sites such as Yahoo! Answers
and StackOverflow or sites aggregating service reviews such
as Yelp owe almost all their utility to contributions from
users. But while there is a large amount of user contributed
content online, not all of it is of the same quality— some con-
tent is excellent, while some is mediocre and some is outright
bad.

Many websites attempt to rank content according to
its quality, using thumbs-up/thumbs-down style ratings by
viewers— this is the case, for example, with comments on
Yahoo! News, reviews on Amazon, and posts on Reddit.
These websites display higher quality contributions more
prominently by placing them near the top of the page and
pushing lower quality ones to the bottom. Since content dis-
played near the top of the page is more likely to be viewed
by a user, ranking good content higher leads to a better user
experience. But there is also another aspect to displaying
better content more prominently: it potentially provides an
incentive to produce high quality content that might ap-
peal to a contributor’s desire for attention. In other words,
how contributions are displayed as a function of their esti-
mated quality constitutes a mechanism for allocating atten-
tion, which might affect the incentives of contributors and
influence the quality of their contributions.

What can we understand, using a game-theoretic ap-
proach, about how the mechanism used to display content
influences the quality of the contributions? In particular,
how does the choice of mechanism influence quality when
the number of potential viewers, and therefore the poten-
tial available attention, grows very large? The diverging
attention regime is arguably the most important from the
perspective of user-generated content. First, these are the
situations where delivering high quality content matters the
most from the perspective of viewer welfare. Second, the
popular sites are the ones that draw the most attention-
motivated contributors, as well as the ones that tend to



attract contributions of varying quality1. Indeed, tremen-
dously large amounts of attention are not uncommon for
popular content on the web; for instance, the most popular
YouTube videos have been viewed over a hundred million
times and even days-old ‘trending’ videos have hundred of
thousands of views, numbers that clearly belongs to the di-
verging attention regime.

In this paper, we analyze two mechanisms that use viewer
ratings to allocate attention to content— the widely used
rank-order mechanism, where contributions are allocated
positions on the page in decreasing order of their ratings,
and a proportional mechanism [2, 3], which distributes
attention in proportion to the number of positive ratings.
The rank-order mechanism is ubiquitous on UGC sites
all over the Web, while the proportional mechanism is a
natural and more ‘fair’ alternative: if two contributions
receive very similar numbers of votes, it only seems fair
that they receive similar amounts of attention as well, but
this does not necessarily hold in the rank-order mechanism.
What happens to equilibrium quality and participation
in the rank-order mechanism as the amount of available
attention diverges, and how does it compare against the
more fair proportional mechanism?

Our Contributions. We analyze equilibrium behav-
ior in the rank-order mechanism in a game-theoretic model
where contributors are motivated by attention and have a
cost of participation that increases with the quality of their
content, as in [3]. Contributors in our model are strategic
agents who choose both whether to contribute, modeled by
their probability of participation, and the quality of their
contribution conditional on participating, to maximize their
payoff. This ensures that participation is endogenously de-
termined as a strategic choice by potential contributors, as
in [3]: capturing endogenous participation is important in
the UGC setting since users have the option of not con-
tributing should they prefer not to do so.

Analyzing the rank-order mechanism is nontrivial because
an agent’s payoff depends on her choice of quality and other
agents’ choices of quality in a complicated way— the number
of votes mi an agent i receives is a random variable in her
quality qi. The final payoff to i depends on the rank of the
instantiation of this random variable amongst the m−i, the
number of votes received by other agents, which are also
random variables in the other agents’ quality choices.

We first show that symmetric mixed strategy equilibria,
where all agents participate with probability β and ran-
domly choose a quality from a common distribution F (q)
if contributing, always exist for the rank-order mechanism.
We then investigate equilibrium behavior as the amount of
attention increases, and show that the lowest quality that
can arise in a mixed strategy equilibrium tends to the high-
est possible quality (i.e., the optimal quality) as the avail-
able attention diverges. We also show that if there are not
too many potential contributors, it is possible to choose the
number of votes used by the mechanism to rank contribu-
tions in such a way as to guarantee full participation (i.e.,
β = 1) in the limit of diverging attention.

1For example, Slashdot notes in its comments moderation
FAQ that when Slashdot was small, it received a small num-
ber of good quality posts— the need for rating comments
arose only after it grew larger and more popular, which led
to posts of varying quality.

Finally, we compare the rank-order mechanism to the
more equitable proportional mechanism. We show that
the proportional mechanism always has an equilibrium in
which all agents participate with probability β and choose
a fixed quality qp upon participating. However, unlike the
rank-order mechanism, whether this equilibrium quality
converges asymptotically to the optimal quality depends
on how the number of potential contributors grows with
the number of viewers. We then compare the random
equilibrium quality choices in the rank-order mechanism
with the deterministic quality choices in the proportional
mechanism and show that the probability an agent chooses
higher quality in the rank-order mechanism than in the
proportional mechanism tends to 1 as the amount of avail-
able attention diverges. Thus the rank-order mechanism
elicits higher quality contributions in equilibrium than the
proportional mechanism.

Related Work. There is a growing body of research on
human computing systems and user contributed content, but
relatively little of this work addresses the analysis and de-
sign of these systems from a game-theoretic perspective [2,
7, 8]. [2] studies the question of designing incentives for on-
line question-and-answer forums, and focuses on incentives
for participants to contribute their answers quickly instead of
delaying their contribution, but does not address the issue of
incentivizing high quality contributions. The most relevant
paper to our work is [3], which introduces a model to address
the quality of user-generated content. This paper shows that
a simple mechanism which eliminates contributions that are
not uniformly rated highly by all voters achieves optimal
quality in the limit as the amount of available attention
diverges. Our model has a few technical differences from
that in [3], and is also used to instead address the problem
of incentives in the widely used rank-order mechanism and
compare those to incentives in the proportional mechanism.

There is a large literature in economics on using rank-
order tournaments as incentive schemes (e.g. [4], [5], [10],
[12]). This literature analyzes the consequences of employee
compensation schemes which reward employees based on
how their output compares to that of other employees in
the organization. While agents in our model are also ranked
based on how the number of positive votes they receive com-
pares to that of other agents, there are several important
differences between our paper and this work. In our paper,
an individual’s observable output is the random number of
users who vote positively on her contribution, but this type
of framework is not captured by the assumptions made in ex-
isting work on rank-order tournaments. Also, not all agents
need participate in equilibria in our model, but all employ-
ees must work in the economics literature. In addition, most
existing work on rank-order tournaments focuses on equilib-
ria in which all agents exert a deterministic level of effort in
equilibrium,2 whereas we extensively analyze mixed strategy
equilibria. The focus on the limiting case we consider as well
as the comparison between the rank-order and proportional
mechanisms is also missing in this literature.

There is also a literature in political economy that com-
pares how allocating political power in proportion to the
number of votes received rather than in order of which can-

2One very rare exception is [12], which briefly mentions that
agents may have an incentive to exert random levels of effort,
but does not conduct an extensive analysis of such equilibria.



didates receive the most votes affects elections (e.g. [6], [11],
[13], [14]). However, these papers do not focus on how these
differences would affect incentives for individuals to produce
high quality actions.

2. MODEL
Content. Each unit of content, or contribution, has a

quality q, where q ∈ [0, 1] is the probability that a viewer
will like the contribution, i.e., rate it as ‘good’ or ‘useful’.
The quality q of a contribution is not directly observable in
our model, but it influences the number of positive votes the
content receives.

Each contribution is rated by T viewers, where we later
allow T to be a parameter that can be chosen by the mecha-
nism. We assume that viewers are not strategic, and simply
provide this binary feedback non-strategically by truthfully
answering the question of whether they found the contribu-
tion to be good or useful.

Given a contribution i with quality qi, the number of pos-
itive votes it receives is a random variable. We let mi denote
the number of positive votes received this contribution, and
note that the distribution of mi is binomial with parameters
(T, qi). We also let m−i denote the vector of the numbers
of positive votes received by other contributions.

Contributors. There is a pool of potential contributors,
or agents, of size K. Each agent can choose the probability
with which she will contribute, as well as the quality of her
contribution should she decide to participate. We denote
the probability that agent i decides to contribute by βi and
the quality she chooses when she contributes by qi. Since
each potential contributor decides whether to participate or
not probabilistically, the number of actual contributors is a
random variable. We denote the instantiation of this random
variable by k, and note that the distribution of k depends
on K as well as β1, . . . , βK .

Contributors are strategic: they choose both β and q
strategically to maximize their expected payoffs given the
potential costs and benefits from contributing. We describe
these payoffs next.

If an agent chooses not to contribute, then she incurs no
cost but also receives no benefit, so her net payoff is 0. Oth-
erwise, the agent must pay a cost reflecting the effort she
expended to produce content, and obtains a benefit reflect-
ing the attention she was able to get as a result of producing
that content.

The cost incurred by a contributor depends on the quality
of the content she chooses to produce: the cost of producing
content of quality q is c(q), which is an increasing function
of q (i.e., producing higher quality content is more costly).
We make the following assumptions:

1. The cost function c is continuously differentiable in q
for all q < 1.

2. c(0) > 0 and limq→1 c(q) = ∞.

3. c is convex and c′(0) = 0.

The condition c(0) > 0 indicates that making a contribution,
even a very poor one, takes more effort than not participat-
ing at all. The assumption that limq→1 c(q) = ∞, as in
[3], indicates that producing perfect content, which corre-
sponds to making every viewer happy, is nearly impossible.
The final assumption is a standard assumption for cost func-
tions in the economics literature and indicates that it is more

difficult to improve higher-quality content, while improving
awful content takes almost no effort at all.

The benefit derived by a contributor, as in [3], depends
on the amount of attention she receives, which can depend
in general both on the rating of her contribution and the
number and ratings of other contributions. Let A denote
the total amount of attention that is available to distribute
amongst contributions3. We assume that an agent’s ben-
efit is exactly equal to the attention that she receives. If
contributor i is allocated a fraction αi(mi, m−i) ≥ 0 of the
attention A, then her benefit from receiving this attention is
V (mi, m−i) = αi(mi, m−i)A. A mechanism in this setting
determines how to partition the available attention amongst
the various contributions; thus the value of V (mi, m−i) is
decided by the mechanism.

A contributor i’s payoff from generating content of quality
qi is the difference between her expected benefit and cost,

π(qi, q−i, β−i) = E[V (mi, m−i)|(qi, q−i, β−i)] − c(qi),

where q−i = (q1, . . . , qi−1, qi+1, . . . , qk) denotes the quality
choices of the other contributors, and β−i denotes the par-
ticipation probabilities of the remaining contributors. (Here
we assume that i has already decided to contribute, so her
participation probability does not affect this payoff.) Note
that the expectation in this payoff is taken over the random
number of contributors k as well as the random variables mi

that are determined in part by the parameters qi.
We assume that every viewer who visits a page or site

brings at least one unit of attention, but possibly more, cor-
responding to the fact that each viewer will read at least
one contribution but some read more. Thus A is at least as
large as the number of viewers. We will also assume through-
out that the number of potential contributors K is no larger
than the number of potential viewers and therefore the total
amount of attention, i.e., K ≤ A.

Solution Concept. Since agents’ payoff functions are
symmetric in the parameters of the game, we focus through-
out on symmetric equilibria. In a symmetric equilibrium,
each contributor participates with the same probability and
follows the same strategy of quality choices conditional on
participating. Formally, a symmetric mixed strategy equilib-
rium is a probability β and a distribution F over qualities q
such that when every agent contributes with probability β,
and chooses a quality drawn from the CDF F (q) conditional
on contributing, no agent can increase her expected payoff
by deviating from this strategy, i.e., by changing either the
probability of participation or the distribution over qualities
with which to contribute.

Asymptotics. We will be particularly interested in the
qualities and participation levels in equilibrium in the lim-
iting case as the amount of attention A goes to infinity. We
will assume that this diverging amount of attention comes
from a diverging number of viewers; therefore, the number
of potential contributors, K, as well as the number of view-
ers available to vote on contributions, T , can increase with
A as well.

We will sometimes write K(A) and T (A) to make explicit
the possible dependence of K and T on A, and assume that
as A diverges, K(A) diverges and T (A) can be chosen to di-

3If the agents did not know the exact value of A, but in-
stead only knew its distribution, then the equilibrium anal-
ysis would stay the same except that A would be replaced
with E[A].



verge as well. This corresponds to the observation in practice
that as sites grow more popular in terms of viewership (A
increases), they attract more users who are interested in con-
tributing (K(A)), and more viewers are available to rate the
generated content (T (A)). For instance, the growing popu-
larity of YouTube has led to an increasing number of videos
posted to YouTube, as well as an increasing number of rat-
ings on these videos. We emphasize, though, that T = T (A)
is a parameter chosen by the mechanism, and specifically
can be chosen to be small compared to A, since the mecha-
nism can choose to use only a subset of the available ratings
(for instance, the first T votes) to rank contributions. Thus,
the actual number of ratings is only an upper bound on T ,
and not necessarily the value of T chosen by the mechanism.

3. PRELIMINARIES
First note that if A ≤ c(0), i.e., the total available atten-

tion is smaller than the cost of producing even zero quality
content, then no agents would want to participate since an
agent’s payoff from participating is nonpositive even if there
is no other agent with whom attention must be shared. The
case where no agents participate is not interesting, so we
will assume that

A > c(0)

for the remainder of this paper. This assumption guarantees
that β > 0 in any symmetric equilibrium4.

A pair (β, F (q)) with β ∈ (0, 1] constitutes a symmetric
mixed strategy equilibrium if the following two conditions
are satisfied:

1. No agent wants to choose a different β: For this to
hold when β = 1, the expected payoff to an agent from
participating must be nonnegative when she chooses a
quality from F (q) and the remaining agents participate
with probability β = 1 and choose quality from F (q).
For this to hold for β ∈ (0, 1), an agent’s expected
payoff from participating must be exactly zero since
otherwise she would want to either always participate
or never participate.

2. For any q in the support of F , no agent can obtain a
strictly larger payoff by choosing some other quality
q′ ∈ [0, 1) instead of q upon participating, given that
remaining agents use the strategy (β, F (q)).

We next elaborate on the conditions that must hold for
β ∈ (0, 1] to be an equilibrium participation probability in
a symmetric equilibrium.

If all agents participate with probability β = 1 and draw
their qualities from the same distribution F (q) upon par-
ticipating, then by symmetry, each agent receives the same
amount of attention as every other agent in expectation.
Therefore, each agent’s expected benefit is A

K
(β = 1 so

k = K, i.e., all agents contribute) and each agent’s expected
cost is E[c(q)|q ∼ F (q)]. In order for an agent to not be able
to profitably deviate by changing her participation probabil-
ity, we must thus have A

K
≥ E[c(q)|q ∼ F (q)].

Now suppose all other agents participate with probabil-
ity β ∈ (0, 1) and agent i decides that she will partic-
ipate and use the same quality distribution F (q) as the

4β = 0 cannot be an equilibrium participation probability
since then an agent can improve her current payoff of 0 by
entering and producing zero quality content.

other agents. Then agent i obtains an expected benefit of
E[A

k
| i enters; other agents enter with probability β], where

the expectation is over the random decisions of other agents
to contribute. This holds because each agent draws quali-
ties from the same distribution, so by symmetry each agent’s
expected benefit from participating is A

k
when k − 1 of the

K − 1 remaining contributors participate. The expected
cost of using strategy F (q), conditional on participating, is
E[c(q)|q ∼ F (q)]. Thus in order for agent i to be indifferent
between participating and not participating, we must have
that E[A

k
| i enters; other agents enter with probability β] =

E[c(q)|q ∼ F (q)].
To summarize, the necessary conditions to have an equi-

librium in which each agent participates with probability
β ∈ (0, 1] and chooses quality drawn from the distribution
F (q) upon participating are the following:

1. If β ∈ (0, 1), the expected benefit from participating
must equal the expected cost:

E[
A

k
|i enters; other agents enter with probability β] =

E[c(q)|q ∼ F (q)].

2. If β = 1, the expected benefit from participating is not
smaller than the expected cost:

A

K
≥ E[c(q)|q ∼ F (q)].

3. For any q in the support of F , no agent can obtain a
strictly larger payoff by choosing some other quality
q′ ∈ [0, 1) instead of q upon participating, given that
remaining agents use the strategy (β, F (q)).

4. RANKING MECHANISM
We first consider ranking mechanisms. A ranking mecha-

nism arranges contributions in decreasing order of the num-
ber of positive votes they receive and allocates more atten-
tion to contributions which are ranked higher. The common
practice of displaying comments or answers on a webpage
in decreasing order of the number of positive votes received,
used by most sites hosting UGC, corresponds to such a rank-
ing mechanism since more users view content near the top
of the page than the bottom. In this section, we analyze the
mixed strategy equilibria of ranking mechanisms, and then
prove results about how equilibrium quality and participa-
tion probability behave as the amount of available attention
becomes large. We first formally define ranking mechanisms.

Definition 4.1 (Ranking Mechanism Mr(T, α)).
Let αj(k) ≥ 0 be a sequence of numbers that is nonincreas-

ing in j for all k and satisfies
∑k

j=1 αj(k) = 1, where the
values of αj do not depend on the qualities q for any j,
although they can depend on the number of contributors k.

Suppose there are k contributors and each contribution
is voted on by T viewers. The ranking mechanism ranks
contributions in decreasing order of the number of positive
votes received (with ties broken randomly) and awards the
jth ranked contribution attention αjA.

Note that both α, which specifies the distribution of at-
tention amongst the ranks, as well as T , the number of votes
used to determine the rankings, are parameters of the mech-
anism that can be chosen to achieve desirable properties.

We first state the following simple proposition.



Proposition 4.1. Suppose qi > qj, and let the number
of votes received by i and j be mi and mj respectively. Then
limT→∞ Pr(mi > mj) = 1.

Thus a higher quality contribution receives a larger num-
ber of positive votes, and is therefore ranked higher, than
a lower quality contribution in the limit as the number of
votes T goes to infinity.

We first show that the ranking mechanism always has a
symmetric mixed strategy equilibrium in which all agents
choose the same probability of entry, and choose a quality
from the same distribution if they decide to contribute.

Theorem 4.1. For any values of A, K, T , and α, there
exists a symmetric mixed strategy equilibrium in which all
contributors enter with probability β and choose a quality
drawn from the same cumulative distribution function F (q)
conditional on contributing.

Proof. First note that no player in this game would ever
choose a quality q > c−1(A), as a player could always obtain
a strictly greater expected payoff by not participating than
by participating and choosing a quality q > c−1(A). Thus
any mixed strategy equilibrium to the game in which players
are restricted to choosing q ∈ [0, c−1(A)] is also a mixed
strategy equilibrium of the original game.

Now note that this modified game in which players are
restricted to choosing q ∈ [0, c−1(A)] is a symmetric game
in which each player has a pure strategy space that is com-
pact and Hausdorff. Also note that each player’s expected
payoff in this modified game is continuous in the actions of
the players. It thus follows from Theorem 1 of [1] that there
exists a symmetric mixed strategy equilibrium of this mod-
ified game. This in turn implies that there is a symmetric
mixed strategy equilibrium of the original game.

Thus it always makes sense to analyze symmetric mixed
strategy equilibria of the form discussed in §2. While mixed
strategies are more difficult to analyze than pure strategies,
the use of mixed strategies as a solution concept is partic-
ularly reasonable in this setting as it allows for the possi-
bility that different contributors produce different quality
content. This correlates well with observation in practice,
where not all contributions, for example answers to a ques-
tion on StackOverflow or comments on a news article, are of
the same quality.

In general, a mechanism can have multiple mixed strategy
equilibria. A natural question to ask is whether any of these
equilibria is ‘bad’, in the sense of inducing low-quality equi-
librium contributions. Our first result illustrates that as long
as there is at least a small difference between the amount of
attention allocated to contributions that are ranked differ-
ently, such bad Nash equilibria cannot exist. Specifically, we
show that if T , the number of votes used to rank the con-
tributions, becomes large as the amount of attention grows,
contributors will choose quality arbitrarily close to 1 in the
limit as the amount of attention diverges.

Theorem 4.2. Suppose that αj(k) − αj+1(k) = Θ(k−2)
for all j ≤ k − 1, αk(k) = 0 for sufficiently large k, and
limA→∞ T (A) = ∞. Then, for any q∗ < 1, the probability
an agent who contributes chooses quality q > q∗ goes to 1 as
A goes to infinity.

In a mixed strategy equilibrium, a contributor can draw
any quality in the support of the equilibrium distribution:

the theorem says that the lowest quality in this equilibrium
distribution tends to the optimal quality as the amount of
attention diverges.

Since the precise equilibrium strategies that agents use
may vary with A, we will henceforth use β(A) to denote
the dependence of the equilibrium participation probability,
and FA(q) to denote the dependence of the equilibrium dis-
tribution from which contributors choose their quality, on
the available attention A. We now prove the result.

Proof Of Theorem 4.2. Suppose by means of contra-
diction that there exists some q∗ < 1 and some γ > 0 such
that the probability a contributor chooses quality q ≤ q∗ is
at least γ for an infinite number of A. If qA denotes the
minimum value of the set of all q in the support of FA(q),
then qA ≤ q∗ holds for all such A. For small ε > 0, let
pA(ε) = FA(qA + ε) denote the probability that a contribu-
tor chooses some quality q ≤ qA + ε for a given A.

Our proof breaks down into three steps. We first show
that if we restrict attention to a subsequence of A for
which the probability a contributor chooses quality q ≤ q∗

is at least γ, it must be the case that limA→∞ pA(ε) ≤
Cε for some constant C and small ε > 0, where the
limit is taken along this subsequence. We then show that
if limA→∞ pA(ε) ≤ Cε, then it must be the case that

limA→∞
β(A)K(A)

A
= 0 along this subsequence. Finally, we

show that if limA→∞ pA(ε) ≤ Cε and limA→∞
β(A)K(A)

A
= 0

along this subsequence, then it cannot be the case that qA

is in the support of FA(q).
Step 1: We first show that if we restrict attention to a

subsequence of A for which the probability a contributor
chooses quality q ≤ q∗ is at least γ, it must be the case that
limA→∞ pA(ε) ≤ Cε for some constant C and small ε > 0,
where the limit is taken along this subsequence.

To see this, suppose by means of contradiction that there
is no constant C such that limA→∞ pA(ε) ≤ Cε for small
ε > 0 along this subsequence. Note that if a contributor
chooses quality q = qA, then the probability she receives
a higher ranking than a particular other contributor who
chooses quality q ≤ qA + ε is no greater than 1

2
. So if ηA(ε)

denotes the expected fraction of contributors who choose
quality q > qA + ε and receive a lower ranking than this
contributor for a given A, then the expected total fraction
of contributors who receive a lower ranking than her is no

greater than pA(ε)
2

+ ηA(ε).
Now note that if this contributor instead uses quality

q = qA + 2ε for some ε > 0, then the probability she re-
ceives a higher ranking than a particular other contributor
who chooses quality q ≤ qA + ε goes to 1 in the limit as T
goes to infinity. The expected fraction of contributors who
choose quality q > qA + ε and receive a lower ranking than a
contributor who uses quality q = qA + 2ε is at least as large
as the expected fraction of contributors who choose quality
q > qA + ε and receive a lower ranking than a contributor
who uses quality q = qA. Thus if she instead uses quality
q = qA + 2ε for some ε > 0, then the expected fraction of
contributors who choose quality q > qA + ε and receive a
lower ranking than her is at least ηA(ε). From this it follows
that the expected total fraction of contributors who receive
a lower ranking than this contributor when she chooses qual-
ity q = qA + 2ε is at least pA(ε) + ηA(ε) in the limit as T
goes to infinity.

Thus, choosing quality q = qA + 2ε instead of q = qA re-



sults in this contributor receiving a higher ranking than an

expected fraction of at least pA(ε)
2

more contributors. There-
fore, if there are k participating contributors, the expected
number of contributors that she beats increases by at least
pA(ε)k

2
as a result of this change. Moving up in the rank-

ings by one spot increases a contributor’s payoff by Θ( A
k2 )

since αj(k) − αj+1(k) = Θ(k−2) for all j ≤ k − 1. Thus
choosing quality q = qA + 2ε instead of q = qA increases

her expected benefits by Θ( pA(ε)k
2

( A
k2 )) = Θ( pA(ε)A

k
). So if

bA(ε) denotes the change in expected benefits from choosing
quality q = qA +2ε instead of choosing quality q = qA, there
is no constant C such that limA→∞ bA(ε) ≤ Cε for small
ε > 0.

Now let cA(ε) denote the added cost a contributor incurs
by choosing quality q = qA + 2ε instead of choosing qual-
ity q = qA. Note that there exists some constant C such
that cA(ε) ≤ Cε for small ε > 0 since qA ≤ q∗ < 1 im-
plies c′(qA) ≤ c′(q∗), which is finite. Combining this with
the result in the previous paragraph shows that there exists
some large A and some small ε > 0 such that a contribu-
tor obtains a strictly larger expected payoff from choosing
the quality q = qA + 2ε instead of choosing quality q = qA.
This contradicts the fact that qA is in the support of FA(q)
and proves that there exists some constant C such that
limA→∞ pA(ε) ≤ Cε for small ε > 0 along this subsequence.

Step 2: Now we show that if there exists some con-
stant C > 0 such that limA→∞ pA(ε) ≤ Cε for small
ε > 0 along this subsequence, then it must be the case that

limA→∞
β(A)K(A)

A
= 0 along this subsequence.

To see this, note that if there exists some constant C > 0
such that limA→∞ pA(ε) ≤ Cε for small ε > 0 along this sub-
sequence, then as T becomes large, the expected fraction of
contributors who receive a lower ranking than a contribu-
tor who participates with quality q = qA goes to zero, for
the following reason. Let ε(T ) denote the largest value of
ε > 0 such that the probability of an agent with quality qA

receiving a higher ranking than one with quality qA + ε(T )
is at least 1

T
; then, limT→∞ ε(T ) = 0. Thus the expected

fraction of contributors who receive a lower ranking than a
contributor who participates with quality qA is no greater
than pA(ε(T )) + 1

T
for any T . This tends to zero as T goes

to infinity.
Thus if g(A) denotes the expected fraction of contributors

who receive a lower ranking than a contributor who partici-
pates with quality qA, then limA→∞ g(A) = 0. Now if there
are k contributors, then the expected number of contribu-
tors who receive a lower ranking than one who participates
with quality qA is g(A)k. Combining this with the facts that
αj(k)−αj+1(k) = Θ(k−2) for all j ≤ k−1 and αk(k) = 0 for
sufficiently large k shows that a contributor who participates
with quality qA obtains an expected amount of attention
Θ(g(A)k A

k2 ) = Θ(g(A)A
k
).

Now k
β(A)K(A)

converges in probability to 1 as A →

∞, so Θ(g(A)A
k
) = Θ(g(A) A

β(A)K(A)
). Thus if

limA→∞
β(A)K(A)

A
= 0 does not hold along this subsequence,

then limA→∞ g(A) = 0 implies it must be the case that
a contributor who contributes with quality qA receives an
expected amount of attention that approaches zero as A
goes to infinity. But this means that an agent could obtain
a strictly higher payoff by not contributing than by con-
tributing with quality qA for some large A, contradicting
the fact that qA is in the support of FA(q). This contradic-

tion shows that limA→∞
β(A)K(A)

A
= 0 must hold along this

subsequence.

Step 3: Finally we show that if limA→∞
β(A)K(A)

A
= 0

holds along this subsequence, then it cannot be the case
that qA is in the support of FA(q).

To see this, let γA = FA(q∗) denote the probability that a
contributor chooses a quality q ≤ q∗ for a given A, and note
that γA ≥ γ for all A in the subsequence. Also note that if
a contributor uses quality q = q∗ + ε instead of using quality
q = qA, then this costs her no more than c(q∗ + ε)− c(qA) ≤
c(q∗ + ε).

Now if this contributor uses quality q = qA, then the prob-
ability she receives a higher ranking than a particular other
contributor who chooses quality q ≤ q∗ is no greater than
1
2
. Thus if δA denotes the expected fraction of contributors

who choose quality q > q∗ and receive a lower ranking than
this contributor using quality qA, then the expected total
fraction of contributors that receive a lower ranking than
her is no greater than γA

2
+ δA.

Now, if she instead uses quality q = q∗ + ε for some ε > 0,
then the probability she receives a higher ranking than a par-
ticular other contributor who chooses quality q ≤ q∗ goes to
1 in the limit as T goes to infinity. The expected fraction of
contributors who choose quality q > q∗ and receive a lower
ranking than a contributor who uses quality q = q∗ + ε is at
least as large as the expected fraction of contributors who
choose quality q > q∗ and receive a lower ranking than a
contributor who uses quality q = qA. Thus if the contribu-
tor instead uses quality q = q∗ + ε for some ε > 0, then the
expected fraction of contributors who choose quality q > q∗

and receive a lower ranking than the contributor is at least
δA. From this it follows that the expected fraction of con-
tributors who receive a lower ranking than this contributor
when she chooses quality q = q∗ + ε is at least γA + δA in
the limit as T goes to infinity.

Thus choosing quality q = q∗ + ε instead of q = qA re-
sults in receiving a higher ranking than an expected frac-
tion of at least γA

2
additional contributors. Thus if there

are k participating contributors, this contributor increases
the expected number of agents she beats by at least γAk

2
as a result of this change. As before, moving up in the
rankings by one spot increases the payoff by Θ( A

k2 ) since

αj(k) − αj+1(k) = Θ(k−2) for all j ≤ k − 1. Thus if a
contributor chooses quality q = q∗ + ε instead of choosing
quality q = qA, then she increases her expected benefits by
Θ( γAk

2
( A

k2 )) = Θ(A
k
) = Θ( A

β(A)K(A)
).

But for sufficiently large A in the subsequence, it fol-
lows that this increase in expected benefits is greater than
c(q∗ + ε) since limA→∞

A
β(A)K(A)

= ∞ in the subsequence

but c(q∗ + ε) is a constant independent of A. Thus from
this it follows that a contributor obtains a strictly greater
expected payoff from choosing quality q = q∗ + ε instead of
choosing quality q = qA for sufficiently large A in the subse-
quence. This contradicts the existence of some such q∗ and
proves the desired result.

This theorem uses the condition that αj(k) − αj+1(k) =
Θ(k−2). It is worth noting that the result that contribu-
tors produce arbitrarily high quality content does not de-
pend crucially on this assumption. If we instead replace
the assumption that αj(k) − αj+1(k) = Θ(k−2) for all
j ≤ k − 1 in Theorem 4.2 with the weaker assumption that
αj(k) − αj+1(k) = Ω(k−2) for all j ≤ k − 1, then the result



would go through with a very similar proof. That is, there
is no problem inducing high quality content as long there
is at least some minimum difference between the attention
allocated to content ranked differently.

To understand the intuition behind this result, first note
that in any equilibrium it must be the case that a large
fraction of participating contributors produce content with
quality close to qA, where qA is the minimum quality in the
support of FA(q): if only a small fraction of agents produce
content with quality close to qA, then a contributor who
produces quality qA will achieve a lower ranking than almost
all other contributors, and will obtain almost no attention.
Thus such an agent could achieve a higher expected payoff
by not contributing, and it would not be possible for qA to
be in the support of FA(q).

But if a large fraction of participating contributors are
producing content with quality close to qA, then for large T ,
an agent can ensure that she will achieve a higher ranking
than a significant number of additional contributors by pro-
ducing content with quality q = qA + ε for some small ε > 0
(in contrast with choosing quality q = qA). Thus if qA is
bounded away from 1, an agent could profitably deviate by
producing content with quality q = qA + ε instead of con-
tent with quality q = qA for some small ε > 0. From this it
follows that qA must be close to 1 for large A.

Next we show that one can choose the number of individ-
uals who vote on the content, T , in such a way to induce all
contributors to participate in the limit, as long as the pool
of potential contributors does not grow too quickly with the
number of viewers.

Theorem 4.3. Suppose that limA→∞
K(A)

A
= 0 and

αj(k) − αj+1(k) = Θ(k−2) for all j ≤ k − 1. Then there
exists a sequence {T (A)}∞A=1 such that limA→∞ T (A) = ∞
and β = 1 in equilibrium for sufficiently large A.

We prove this theorem in the appendix. This result indi-
cates that if T (A) does not grow too quickly with A, then
all contributors will participate for sufficiently large A (note
that T (A) still diverges so that quality still becomes opti-
mal, albeit at a slower rate). While this result makes use of

a technical assumption that limA→∞
K(A)

A
= 0, we believe

this is the most critical case to ensure large participation, as
this is the case where there is only a relatively small number
of agents who may contribute.

To understand the intuition behind this result, note
that if T (A) does not increase too quickly with A, then
contributors will have a relatively lower incentive to choose
high quality because producing higher quality content does
not result in an especially large increase in one’s probability
of being ranked highly. But when contributors are not
producing exceedingly high quality content, the cost to
participating with a quality that will be competitive in the
mechanism is relatively small, and agents find it worthwhile
to participate. Thus if T (A) does not increase too quickly
with A, then all agents will participate for sufficiently large
A.

Implementing Ranking Mechanisms. Theorem 4.2
requires a mechanism designer to choose the values of α to
satisfy αj(k) − αj+1(k) = Θ(k−2) and αk(k) = 0 to induce
high quality. The needed difference in attention between
two contributions can be achieved as follows: To increase
the difference in attention between two contributions, one

can show one contribution prominently more often than the
other, and to decrease the difference one can show the two
contributions in prominent positions roughly equally often.
One can also easily ensure that αk(k) = 0 by simply never
showing a contribution that is ranked last by the initial vot-
ing.

The analysis in Theorem 4.3 suggests that a mechanism
designer will want to choose T so that T (A) does not grow
too quickly with A in order to induce full participation. This
can also be achieved in practice by simply ignoring votes
beyond the first T votes. Thus the type of restrictions on T
and α used in these results should be easily implementable
in practice.

5. PROPORTIONAL MECHANISM
Since all agents produce similar qualities in equilibrium in

the rank-order mechanism, it might seem unfair to give sig-
nificantly greater amounts of attention to agents who receive
higher numbers of positive votes, even though the difference
between the numbers of positive votes the contributors re-
ceive is likely to be very small. A natural and more equi-
table alternative is to reward contributors in proportion to
the number of positive votes they receive— in such a propor-
tional mechanism, two agents who both receive very similar
numbers of positive votes also receive similar amounts of
attention5. However, while the proportional system might
allocate attention in a more equitable manner, the mecha-
nism also significantly changes incentives for agents to pro-
duce high quality content in equilibrium. In this section, we
analyze the equilibria of the proportional mechanism.

First we formally define the proportional mechanism.

Definition 5.1 (Proportional Mechanism Mp(T )).
Suppose k agents contribute, each contribution is voted on
by T viewers, and each participating contributor i receives
mi positive votes. Then the proportional mechanism gives
the ith contributor a share mi

∑

k
j=1

mj
of the available attention

if mi > 0 for some i. If mi = 0 for all i, every contributor
receives a share 1

k
of the available attention.

Note that in the proportional mechanism, only the num-
ber of votes used by the mechanism, T , is available as a
parameter of the mechanism that can be varied to achieve
desirable incentives. We first prove a result on the nature of
the equilibrium in the proportional mechanism.

Theorem 5.1. For any values of A, K, and T , there ex-
ists a symmetric equilibrium to the proportional mechanism
in which all contributors participate with probability β and
choose the same quality q conditional on contributing.

Proof. Define β(q) to be the unique value of β ∈ [0, 1]
that satisfies either

c(q) = E[
A

k
| i enters; other agents enter with probability β]

if this holds for some β ∈ (0, 1), β(q) = 0 if c(q) ≥ A, and
β(q) = 1 if c(q) ≤ A

K
. Note that β(q) is unique and well-

defined for all q ∈ [0, 1) and that β(q) is continuous in q.
Define b(qi, q−i, β) to be the expected amount of attention

that a contributor i obtains if contributor i contributes with

5Lazear [9] notes that fairness can lead to desirable equilib-
rium outcomes in certain settings where malicious sabotage
is a concern.



quality qi, all other agents who participate contribute with
quality q−i, and all other agents participate with probabil-
ity β. Thus b(qi, q−i, β) = E[ mi

mi+
∑

j 6=i mj
|β, qi, q−i]. Note

that b(q∗, q∗, β(q∗)) is continuously differentiable in q∗ for
all q∗ ∈ [0, 1) since the probability that a particular realiza-
tion of positive votes (mi, m−i) takes place is a continuously
differentiable function of (qi, q−i, β).

Now note that c′(0) < ∂b
∂qi

(0, 0, β(0)) since c′(0) = 0 and
∂b
∂qi

(0, 0, β(0)) > 0 since the proportional mechanism as-

signs equal attention to all participants if all participants
obtain zero positive votes. Also note that limq∗→1 c′(q∗) >
limq∗→1

∂b
∂qi

(q∗, q∗, β(q∗)) because limq∗→1 c′(q∗) = ∞ but
∂b
∂qi

(q∗, q∗, β(q∗)) is finite for all q∗ ∈ [0, 1]. Since c′(q∗) and
∂b
∂qi

(q∗, q∗, β(q∗)) are continuous in q∗ for all q∗ ∈ [0, 1), it

follows from the intermediate value theorem that there exists
some q∗ ∈ (0, 1) such that c′(q∗) = ∂b

∂qi
(q∗, q∗, β(q∗)). This

shows that there is a quality q∗ at which the local conditions
for not deviating from the quality choice are satisfied, if all
participants enter with probability β(q∗). To show that this
pair of values indeed constitutes an equilibrium, we need to
show that (i) no agent wants to choose a different participa-
tion probability β′, and (ii) there are no non-local profitable
deviations of quality.

First note that it must be the case that β(q∗) > 0 for
this q∗. If β = 0, then we know that ∂b

∂qi
(q∗, q∗, β) = 0, so

c′(q∗) 6= ∂b
∂qi

(q∗, q∗, β(q∗)) since the fact that c(q) is increas-

ing and convex in q implies c′(q∗) > 0 for q∗ > 0. Thus
β(q∗) = 0 cannot hold for this q∗ and we have β(q∗) > 0.

Now if β(q∗) ∈ (0, 1), then by definition of β(q), it must
be the case that

c(q∗) = E[
A

k
| i enters; other agents enter with probability β]

and agents are indifferent between participating with quality
q∗ and not participating. And if β(q∗) = 1, then c(q∗) ≤ A

K
and all agents prefer to participate with quality q∗ than to
not participate. Thus if all agents contribute with proba-
bility β(q∗) and produce quality q∗, no agent can profitably
deviate by participating with a different probability from
β(q∗).

Now we show that no agent can profitably deviate by
contributing with a quality qi 6= q∗ conditional on partic-
ipating. Note that if an agent participates with quality qi

and all other agents participate with quality q∗ and con-
tribute with probability β(q∗), then the marginal change in
an agent’s payoff from contributing with a slightly larger
quality is ∂b

∂qi
(qi, q

∗, β(q∗)) − c′(qi). Since c(qi) is convex, it

follows that −c′(qi) is decreasing in qi for all qi ∈ [0, 1).
Now we show that ∂b

∂qi
(qi, q

∗, β(q∗)) is decreasing in qi.

Note that the marginal benefit from receiving an additional
positive vote is smaller when mi is larger for any fixed val-
ues of m−i since the difference between mi+1

mi+1+
∑

j 6=i mj
and

mi

mi+
∑

j 6=i mj
is decreasing in mi. Now if G(mi|qi) denotes

the distribution of the values of mi given that agent i is pro-
ducing quality qi, then q′i > qi implies that G(mi|q

′
i) first

order stochastically dominates G(mi|qi). Thus if q′i > qi,
then the expected benefit from receiving an additional posi-
tive vote is smaller when an agent is producing with quality
q′i than it is when an agent is producing with quality qi.
From this it follows that ∂b

∂qi
(qi, q

∗, β(q∗)) is decreasing in
qi.

Putting this all together shows that ∂b
∂qi

(qi, q
∗, β(q∗)) −

c′(qi) is decreasing in qi. Thus since ∂b
∂qi

(q∗, q∗, β(q∗)) −

c′(q∗) = 0, it follows that ∂b
∂qi

(qi, q
∗, β(q∗))−c′(qi) > 0 when

qi < q∗ and ∂b
∂qi

(qi, q
∗, β(q∗))− c′(qi) < 0 when qi > q∗. But

this means that an agent prefers to contribute with qual-
ity q∗ than with any quality qi satisfying either qi < q∗ or
qi > q∗. From this it follows that an agent cannot profitably
deviate by choosing some quality different from q∗ and there
is an equilibrium in which all agents participate with prob-
ability β(q∗) and contribute with quality q∗ conditional on
participating.

Next we investigate asymptotic equilibrium quality
choices in the proportional mechanism. In contrast to the
ranking mechanism, whether equilibrium quality choices
converge to the optimal quality in the proportional mech-
anism depends on how quickly the number of potential con-
tributors grows with the number of viewers. If this number

grows slowly enough that K(A)
A

goes to 0 as A goes to infinity,
then equilibrium quality converges 1. But if not, equilibrium
quality remains strictly less than one in the limit.

Before proving this, we first state a lemma regarding the
derivative of the cost function at the equilibrium quality,
which we will use for both our remaining results.

Lemma 5.1. Let β(A) and qp(A) denote equilibrium par-
ticipation probabilities and quality choices in the propor-
tional mechanism for a given A. Then c′(qp(A)) =
Θ( A

β(A)K(A)
).

This lemma is proven in the appendix. Now we use this
lemma to illustrate how equilibrium quality choices vary in
the proportional mechanism as the amount of available at-
tention diverges.

Theorem 5.2. If limA→∞
K(A)

A
= 0, then

limA→∞ qp(A) = 1 and β = 1 for sufficiently large A.

If lim infA→∞
K(A)

A
> 0, then lim supA→∞ qp(A) < 1.

Proof. Note that if limA→∞
K(A)

A
= 0, then the

fact that c′(qp(A)) = Θ( A
β(A)K(A)

) = Ω( A
K(A)

) implies

limA→∞ c′(qp(A)) = ∞ and limA→∞ qp(A) = 1. Also note
that if β(A) < 1 for some large A, then the equilibrium
conditions for indifference between contributing and not
contributing indicate that c(qp(A)) = Θ( A

β(A)K(A)
). Com-

bining this with the fact that c′(qp(A)) = Θ( A
β(A)K(A)

)

shows that
c′(qp(A))

c(qp(A))
= Θ(1). But since limq→1 c(q) = ∞,

limq→1 log c(q) = ∞ as well, limq→1
d
dq

log c(q) = ∞, and

limq→1
c′(q)
c(q)

= ∞. Thus the fact that limA→∞ qp(A) = 1 im-

plies that limA→∞
c′(qp(A))

c(qp(A))
= ∞, meaning

c′(qp(A))

c(qp(A))
= Θ(1)

cannot hold. Thus for sufficiently large A, it is not possible
to have β(A) < 1, and it must be the case that β = 1 for
sufficiently large A.

Now suppose that lim infA→∞
K(A)

A
> 0. In this case,

if β = 1 for sufficiently large A, then the fact that
c′(qp(A)) = Θ( A

β(A)K(A)
) implies that c′(qp(A)) = Θ(1)

and lim supA→∞ qp(A) < 1. And if β(A) < 1 for some
infinite subsequence of A, then an identical argument to

that given in the previous paragraph shows that
c′(qp(A))

c(qp(A))
=

Θ(1) and lim supA→∞ qp(A) < 1 along this subsequence.



From this it follows that lim infA→∞
K(A)

A
> 0 implies

lim supA→∞ qp(A) < 1.

We note that both regimes in this theorem, K(A)
A

→ 0

and K(A)
A

→ r > 0, are of interest in the context of user-
generated content. In question-and-answer sites such as Ya-
hoo! Answers or StackOverflow, the number of users K(A)
who can answer a question is often significantly smaller than
the number of users who consume the answer, possibly via

a search engine, and K(A)
A

→ 0 is likely. On the other hand,
in settings like posts on discussion forums or comments on
blogs where many consumers are also producers, the num-
ber of contributors may not be negligible compared to the

number of viewers who consume the content, i.e., K(A)
A

is
not vanishingly small. The theorem says that the propor-
tional mechanism elicits the optimal quality in the first kind
of setting, but not in the second.

6. COMPARING MECHANISMS
In this section, we compare equilibrium qualities in

the ranking mechanism and the proportional mechanism.
We already know from Theorems 4.2 and 5.2 that when

limA→∞
K(A)

A
> 0, the lowest quality in the support of the

equilibrium distribution in the ranking mechanism converges
to 1, but not in the proportional mechanism. For this case,
therefore, the ranking mechanism leads to higher quality
contributions than the proportional mechanism in the limit
of diverging attention. We now complete this comparison by

investigating the case where limA→∞
K(A)

A
= 0. We show

that in this case also, the ranking mechanism elicits higher
quality contributions than the proportional mechanism in
equilibrium.

First we prove a simple technical lemma.

Lemma 6.1. The minimum value of
∑n

i=1 x2
i subject to

the constraints xi ≥ 0 and
∑n

i=1 xi = 1 is 1
n
.

Proof. Note that subject to the constraints xi ≥ 0 and
∑n

i=1 xi = 1, the expression
∑n

i=1 x2
i is minimized when

xi = 1
n

for all i. To see this, note that if xi = 1
n

+ δi

for some {δi}
n
i=1 satisfying

∑n
i=1 δi = 0, then

∑n
i=1 x2

i =
∑n

i=1(
1
n

+ δi)
2 =

∑n
i=1(

1
n2 + 2

n
δi + δ2

i ) = 1
n

+
∑n

i=1 δ2
i . But

1
n

+
∑n

i=1 δ2
i is minimized when δi = 0 for all i. From this

it follows that the expression
∑n

i=1 x2
i is minimized when

xi = 1
n

for all i, and the minimum value of
∑n

i=1 x2
i subject

to the constraints xi ≥ 0 and
∑n

i=1 xi = 1 is 1
n
.

Now we use this to show that agents almost always choose
higher quality in the ranking mechanism than in the propor-
tional mechanism when the amount of attention available
becomes large.

Theorem 6.1. Suppose limA→∞
K(A)

A
= 0,

limA→∞ T (A) = ∞, and α in the ranking mechanism
satisfies αj(k) − αj+1(k) = Θ(k−2) for all j ≤ k − 1. Let
qr(A) denote the (possibly random) quality chosen by the
contributors in some equilibrium of the ranking mechanism,
and let qp(A) be an equilibrium quality in the proportional
mechanism. Then limA→∞ Pr(qr(A) > qp(A)) = 1.

Proof. Suppose by means of contradiction that
Pr(qr(A) ≤ qp(A)) ≥ γ > 0 for an infinite num-
ber of A. Restrict attention to values of A satisfying

Pr(qr(A) ≤ qp(A)) ≥ γ, and define q∗(A) to be the largest
quality such that Pr(qr(A) < q∗(A)) ≤ γ

2
for any such A.

From this it follows that Pr(q∗(A) ≤ qr(A) ≤ qp(A)) ≥ γ
2

for all A in this subsequence. We also know from Theorem
4.2 that limA→∞ q∗(A) = 1.

Now suppose that a contributor deviates from FA(q) by
making the following change: if she draws a quality q ∈
[q∗(A), qp(A)], then she instead chooses a quality q + ε for
some infinitesimal amount ε > 0; if she draws a quality
q /∈ [q∗(A), qp(A)], then she makes no change to her qual-
ity. We seek to show that this is a profitable deviation for
a contributor for sufficiently large A in the subsequence. To
do this, we first show that the additional expected cost from
this deviation is bounded above by the marginal costs of
producing higher quality content in the proportional mech-
anism, and then show that the expected benefit in the rank-
ing mechanism from this deviation exceeds these marginal
costs.

First note that this change in quality costs a contributor
an additional amount no greater than E[c(q + ε) − c(q)|q ∈
[q∗(A), qp(A)]] which, in the limit as ε → 0, converges to
εE[c′(q)|q ∈ [q∗(A), qp(A)]] ≤ εc′(qp(A)) = Θ(ε A

K(A)
) (since

β(A) = 1 for large A in the proportional mechanism when

limA→∞
K(A)

A
= 0). Next we calculate the expected benefits

from this increase in quality.
Suppose a contributor i chooses a quality q ∈

[q∗(A), qp(A)]. (This happens with probability at least
γ/2 > 0 by assumption). Then there exists an infinite
sequence q̂(A) such that limA→∞ q̂(A) = 1 and Pr(mi

T
≥

q̂(A)) ≥ 1
2

for all A. Thus if two contributors both choose
qualities in [q∗(A), qp(A)], then the probability that they
both receive at least q̂(A)T positive votes is at least 1

4
. More-

over, conditional on both receiving at least q̂(A)T positive
votes, the probability a contributor receives any particular
number of votes is the same for both contributors.

From Lemma 6.1, we know that if two contributors both
receive at least q̂(A)T positive votes and they both receive
any particular number of votes with the same probability,
then the probability that both contributors receive an equal
number of votes is at least 1

(1−q̂(A))T
. Thus if one contrib-

utor receives an additional vote when both receive at least
q̂(A)T positive votes, then this additional vote increases her
probability of being ranked ahead of the other contributor
by at least 1

2(1−q̂(A))T
. (An agent is ranked ahead of an-

other agent with probability 1
2

when both receive the same
number of votes and with probability 1 when one receives
a strictly larger number of votes, so the additional vote in-
creases the agents’s probability of being ranked ahead of the
other agent by a factor of 1

2
.)

Now the probability both contributor i and some other
contributor choose qualities q ∈ [q∗(A), qp(A)] is at least
( γ

2
)2. And we have seen that the probability that both con-

tributors receive at least q̂(A)T positive votes if they choose
qualities q ∈ [q∗(A), qp(A)] is at least 1

4
. Combining this

with the results in the previous paragraph shows that an
additional vote for contributor i increases the probability of
her being ranked ahead of a particular other contributor by

at least ( γ
2
)2 1

4
1

2(1−q̂(A))T (A)
= γ2

32(1−q̂(A))T (A)
.

Now increasing quality by an infinitesimal amount
ε(A) = o( 1

T (A)
) leads to an additional positive vote

with probability Θ(ε(A)T (A)). Therefore, increasing qual-
ity by ε(A) increases the probability of being ranked



ahead of a particular other contributor by an amount

Ω(ε(A)T (A) γ2

32(1−q̂(A))T (A)
) = Ω( ε(A)

1−q̂(A)
).

This implies that a contributor’s change in expected rank-
ing from increasing quality by ε(A) when q ∈ [q∗(A), qp(A)]

is Ω( ε(A)k
1−q̂(A)

). And moving up in the rankings by one spot

increases one’s payoff by Θ( A
k2 ) since αj(k) − αj+1(k) =

Θ(k−2) for all j ≤ k − 1. Thus if an agent increases
her quality by ε(A) when q ∈ [q∗(A), qp(A)], then her

expected benefit increases by an amount Ω( ε(A)k
1−q̂(A)

A
k2 ) =

Ω( ε(A)A
(1−q̂(A))β(A)K(A)

).

Thus, increasing quality by ε(A) when q ∈ [q∗(A), qp(A)]

leads to an additional benefit of Ω( ε(A)A
(1−q̂(A))β(A)K(A)

), at an

additional cost of Θ( ε(A)A
K(A)

). Since limA→∞ q(A) = 1, it

follows that this is a profitable deviation for sufficiently large
A. This contradicts the assumption that there is a sequence
of equilibria for which Pr(qr(A) ≤ qp(A)) ≥ γ > 0 for an
infinite number of A and proves the desired result.

To understand the intuition behind this result, suppose for
the time being that agents chose quality in the ranking mech-
anism according to a symmetric pure strategy, qr(A). Then
if an agent makes a small change in quality from q = qr(A)
to q = qr(A)+ ε for some ε > 0, the agent goes from obtain-
ing an average ranking in expectation to almost certainly
being ranked near the very top. Thus such a change dra-
matically increases an agent’s expected payoff. By contrast,
in the proportional mechanism, increasing one’s quality by
ε > 0 does relatively little to improve the expected attention
that an agent receives. Thus incentives to produce higher
quality content are greater in the ranking mechanism than
in the proportional mechanism. The proof of the theorem il-
lustrates how this intuition can be extended when the agents
choose quality according to a mixed strategy.

7. DISCUSSION
In this paper, we have analyzed the widely used rank-

order mechanism for displaying user contributed content in
a model with strategic attention-driven contributors, and
shown that the rank-order mechanism elicits contributions
of optimal quality in the limit as the amount of available at-
tention diverges. By contrast, whether equilibrium quality
in the proportional mechanism becomes optimal depends on
the relative rates of growth of the number of potential con-
tributors and the number of viewers. Even when equilibrium
quality in the proportional mechanism tends to the optimal
quality, quality is almost always lower in the proportional
mechanism than in the ranking mechanism. Thus, despite
being more equitable, the proportional system creates infe-
rior incentives for eliciting high quality contributions than
the ranking mechanism.

We note that the ranking mechanism is a relatively ro-
bust mechanism, in the sense that the presence of even a
large number of voters who are error prone or vote ‘good’
or ‘bad’ on all content uniformly does not affect the limiting
equilibrium quality, as long as the number of voters voting
according to quality continues to diverge. This is in contrast
to the mechanism analyzed in [3], where even a small frac-
tion of raters who vote thumbs down on content can lead to
no content being displayed on the site.

There are a number of interesting directions for further
work; we discuss two specific directions. On most sites,

there are almost always some contributors who produce con-
sistently low quality contributions, despite receiving little or
no attention for it. This indicates that some subset of con-
tributors have zero cost for producing low-quality content.
An ideal mechanism in this setting would continue to elicit
high quality contributions and high participation from the
remaining contributors: an interesting question is how ef-
fective the ranking mechanism is when such contributors
are present, and whether other mechanisms might be more
effective. A second interesting direction regards questions
related to malicious voters. The ranking mechanism is ro-
bust to voters who do not vote according to the model as
long as they do this uniformly for all content. However, it
is less clear how robust the results are in a model in which
some malicious voters try to bring up specific contributions
or put down others. Addressing this is an open question.
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APPENDIX
Proof Of Theorem 4.3. Suppose that there is an infi-

nite sequence of values of A such that, for each A, there
is a symmetric equilibrium to the ranking mechanism with
β(A) < 1. We know from the conditions on indifference
between entry and exit that this implies that E[c(q)|q ∼



FA(q)] = Θ( A
β(A)K(A)

) for all A in this sequence. Thus if

q∗(A) denotes the largest quality in the support of FA(q),
then we know that c(q∗(A)) = Ω( A

β(A)K(A)
) for all A in

this sequence. Thus there exists some function g(A) =
Θ( A

K(A)
) independent of T (A) such that c(q∗(A)) ≥ g(A)

and q∗(A) ≥ c−1(g(A)) for all A in this sequence. Thus if
q̂(A) = c−1(g(A)), then limA→∞ q̂(A) = 1 and q∗(A) ≥ q̂(A)
for all A in this sequence.

Now note that if a contributor chooses some quality
q = q∗(A) + ε(A) instead of choosing quality q = q∗(A)
for some infinitesimal amount ε(A) = o( 1

T (A)
) (which may

either be positive or negative), then the contributor changes
the probability that she receives an additional positive vote
by an amount Θ(ε(A)T (A)). Thus the contributor changes
the probability that she receives a higher ranking than a
particular other contributor by an amount O(ε(A)T (A)),
and the contributor changes the expected number of other
contributors that the contributor receives a higher rank-
ing than by an amount O(ε(A)T (A)β(A)K(A)). And when
a contributor moves up in the rankings by one spot, the
contributor increases her payoff by an amount Θ( A

k2 ) since

αj(k) − αj+1(k) = Θ(k−2) for all j ≤ k − 1. Thus if a con-
tributor chooses some quality q = q∗(A) + ε(A) instead of
choosing quality q = q∗(A) for some infinitesimal amount
ε(A), then the contributor changes her expected bene-
fits by an amount O(ε(A)T (A)β(A)K(A) A

(β(A)K(A))2
) =

O(ε(A)T (A) A
β(A)K(A)

).

Thus if bA(ε(A)) denotes the difference between the ex-
pected benefits from attention that a contributor obtains
by choosing q = q∗(A) + ε(A) instead of choosing qual-
ity q = q∗(A) for some infinitesimal amount ε(A), then
|bA(ε(A))| = O(|ε(A)T (A) A

β(A)K(A)
|), meaning b′A(0) =

O(T (A) A
β(A)K(A)

). But in order for a contributor to not be

able to profitably deviate from choosing quality q = q∗(A),
it is necessary that b′A(0) = c′(q∗(A)). Thus c′(q∗(A)) =
O(T (A) A

β(A)K(A)
).

Recall that c(q∗(A)) = Ω( A
β(A)K(A)

). Combining this with

the result in the previous paragraph shows that c′(q∗(A))
c(q∗(A))

=

O(T (A)). Thus if q(A) denotes a minimizer of c′(q)
c(q)

subject

to the constraint q ∈ [q̂(A), 1], and T (A) = Θ
(

log c′(q(A))
c(q(A))

)

,

then this implies that q∗(A) < q̂(A) for sufficiently large A,
which would contradict the fact that q∗(A) ≥ q̂(A) for all A
in this sequence.

Now since limq→1 c(q) = ∞, it follows that
limq→1 log c(q) = ∞, limq→1

d
dq

log c(q) = ∞, and

limq→1
c′(q)
c(q)

= ∞. Thus limA→∞ q(A) = 1 im-

plies limA→∞
c′(q(A))
c(q(A))

= ∞. Combining this with

the results in the previous paragraphs shows that if

T (A) = Θ
(

log c′(q(A))
c(q(A))

)

, then {T (A)}∞A=1 is a sequence

satisfying limA→∞ T (A) = ∞ such that β(A) = 1 must
hold for sufficiently large A.

Proof Of Lemma 5.1.

E[V (mi, m−i)|(β, qi, q−i)] = E[
mi

mi +
∑

j 6=i mj
A|(β, qi, q−i)].

Note that for a given value of k, as T goes to infin-

ity, mi

mi+
∑

j 6=i mj
= mi/T

mi/T+
∑

j 6=i mj/T
converges in proba-

bility to qi

qi+
∑

j 6=i qj
. Now if qj = q∗ for all j 6= i,

qi

qi+
∑

j 6=i qj
= qi

qi+(k−1)q∗ . Thus as A and K(A) go to in-

finity, qi

qi+(k−1)q∗ converges in probability to qi

qi+β(A)K(A)q∗ .

Thus d
dqi

E[V (mi, m−i)|(β, qi, q
∗)] = Θ( d

dqi

qiA
qi+β(A)K(A)q∗ )

for large A, K(A), and T (A). But d
dqi

qiA
qi+β(A)K(A)q∗ =

Θ( A
β(A)K(A)

). Thus in equilibrium it must be the case that

c′(qp(A)) = Θ( A
β(A)K(A)

).


