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Abstract

The success of a human computation system depends critically on the
humans in the system actually behaving, or acting, as necessary for the
system to function effectively. Since users have their own costs and bene-
fits from participation, they will undertake desirable actions only if prop-
erly incentivized to do so: Indeed, while there are a vast number of human
computation systems on the Web, the extent of participation and quality
of contribution varies widely across systems. How can a game-theoretic
approach help understand why, and provide guidance on designing sys-
tems that incentivize high participation and effort from contributors?

1 Introduction

The Web is increasingly centered around contributions by its users: human com-
putation is growing increasingly common as a means for accomplishing a wide
range of tasks, ranging from labeling and categorization of images and other
content (with workers recruited on paid crowdsourcing platforms like Amazon
Mechanical Turk, or in systems based on unpaid contribution such as Games
with a Purpose or Citizen Science projects like GalaxyZoo), to answering ques-
tions on online Q&A forums (such as Y! Answers, Quora, or StackOverflow,
to name a few), all the way to peer-grading homework assignments in online
education. But while some human computation systems consistently attract
high-quality contributions, other seemingly similar ones suffer from junk or low-
quality contributions, and yet others fail due to too little participation. How can
we design incentives in these systems to elicit desirable behavior from potential
participants?

There are two components to the problem of incentive design for human
computation: (i) Identifying the costs and benefits of potential contributors to
the system (the components that help formulate a model of agent behavior), and
(ii) deciding how to assign rewards, or benefits, as a function of contribution
(analysis and design).

1



The first question of identifying costs and benefits relates closely to the
question of why do people contribute— that is, what constitutes a benefit or a
reward? The answer to this question, of course, varies depending on the par-
ticular system in question. While some systems (such as those based on the
Amazon Mechanical Turk platform), offer financial incentives for participation,
a vast majority of human computation is driven by social-psychological rewards
from participation; such rewards include, for example, both intrinsic motivators
like fun, interest, or the satisfaction of benefiting a cause1, as well as extrinsic
social rewards such as attention, reputation or status. There is now a grow-
ing literature in social psychology addressing what motivates, or constitutes a
reward for, users in such systems2.

But even after answering the question of why people contribute, there is a
second question, which relates to how rewards are allocated. Given that users
value rewards (by definition, and irrespective of their specific nature— financial
or social-psychological), and incur costs (of time and effort) associated with
different actions in the system, how rewards are assigned will influence what
actions users take. That is, when a system depends on self-interested agents
with their own benefits3 and costs to participation, the quality and quantity
of contributions will depend on the incentives created by the reward allocation
scheme being used by the system. Given the understanding from the social
psychology literature on what constitutes a reward, how should the allocation
of these rewards be designed to incentivize desirable outcomes?

The following example illustrates the point. Consider a system with a leader-
board for top contributors (say the users who have classified the most images in
a Citizen Science project like GalaxyZoo, or earned the most points in a GWAP
such as the ESP game); such leaderboards appear to be strong motivators for
users. While there are a number of questions related to leaderboard design,
consider a very basic, simplified, question— should the system display only the
top contributor, or, say, the top 5 contributors? On the one hand, if only one
top-contributor ‘prize’ is given out, it is conceivable that users will try harder to
win that solitary prize, leading to higher effort than when there are five prizes,
since the presence of a greater number of prizes could mean one need not do
as much to win. On the other hand, one could also argue that users will be
more likely to put in effort when they know there are 5 prizes to be had, since
they have a greater chance of winning something, so that their efforts are less
likely to ‘go to waste’, in the second case where there are more prizes. Which
of these is actually the correct prediction of behavior, when all participants are
facing the same question of how much effort to put in? Now suppose these
prizes are not positions on a leaderboard, but rather monetary rewards that all
come out of a fixed prize budget (for example, as in a crowdsourcing contest)—
in this case, should the entire budget be spent on one large prize or 5 smaller

1such as furthering science in a Citizen Science project
2The motivations of contributors in human computation are, naturally, closely related to

those for user-generated content; some of the literature on which is discussed in [JMM12].
3(arising from a range of motivations including possibly other-regarding, or ‘altruistic’,

preferences)
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prizes? Again, informal arguments could be made in favor of either solution; a
formal game-theoretic analysis is necessary to understand how rewards should
be structured to optimally incentivize effort from contributors4.

A formal game-theoretic approach to incentive design, very broadly, pro-
ceeds by constructing an appropriate model where users (agents) make choices
over actions, which are typically associated with costs (note that the term cost
does not only refer to financial costs such as an entry fee, but is also used to
refer to non-monetary quantities such as the cost to time or effort). Action
choices in human computation systems can consist, for example, of the follow-
ing: (i) In most5 systems, participation is a voluntary action choice (with an
associated cost, e.g., of the time required to create an account or to log in to the
system to participate), and mechanisms must be designed to induce adequate
participation when entry is an endogenous, strategic, choice. (ii) In many sys-
tems, agents can make a choice about how much effort to expend on any given
task, potentially influencing the quality of their output and therefore its value
to the system— mechanisms must be designed so as to induce agents to expend
a high level of effort (which is more ‘costly’ than lower effort). (iii) Finally, in
some systems, agents may hold information that they can potentially strategi-
cally misreport to their benefit, such as in voting or rating— this leads to the
problem of designing mechanisms that induce agents to truthfully reveal this
information. (Naturally, any real system might contain a combination of these
choices, as well as others unique to its function—an example of this latter kind
is the choice of the order in which to output descriptive words for images in the
ESP game; see §2.1).

A given design for a human computation system corresponds to, or induces,
some rules that specify the allocation of rewards or benefits given each set
of possible actions by agents. Note that in general, an agent’s reward can
depend not only on her output, but also the outputs (determined by the action
choices) of other agents. Given a particular system design and the corresponding
rules it induces, strategic agents will choose actions that maximize their utility
(difference between benefit and cost) from the system. Agents’ choices of actions
lead to outputs, which in turn define the benefit, or reward, that each agent
receives from the system. A vector of action choices by agents, roughly speaking,
constitutes an equilibrium if no agent can improve her payoff by choosing a
different action6.

There are two aspects to a game-theoretic, or more generally, economic,
approach to incentives: analysis, and design. Analyzing equilibrium behav-
ior under the reward allocation rules of a given system leads to a prediction
about the behavior of agents, and therefore what kind of outcomes one might
expect from that system. Choosing (or altering) the rules according to which

4This particular problem is addressed in a model stylized for online crowdsourcing (contests,
as well as crowdsourced content as in Q&A forums), in [GM12].

5albeit not all systems; peer-grading in online education being a prominent example
6A number of different equilibrium concepts exist to predict how strategic agents will behave

under a given mechanism; see, for instance, [NRTV07].
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rewards are allocated to induce agent behavior that achieves some particular
outcome, or family of outcomes, constitutes design. While a game-theoretic
approach to the analysis and design of any system with strategic agents has
the general structure described above, each setting or system comes with its
own unique features, depending on the choices of available actions, the nature
of the available rewards and differing constraints on how they can be allocated,
and observability of agents’ outputs. In the remainder of this chapter, we will
illustrate applications of the game-theoretic approach outlined above to some
specific human computation domains in §2, and then discuss how the same kind
of approach can be applied to reward design in the context of gamification, and
rewarding contributors for their overall site participation in §3. We conclude
with a discussion of challenges and directions for further work in §4.

2 Game-theoretic models for human computa-
tion systems

In this section, we will look at three instances of game-theoretic analysis and
design for human computation systems to illustrate the game-theoretic approach
outlined in the previous section. Of course, these are not the only examples
of game-theoretic analysis in the context of human computation; we briefly
mention two other domains of interest.

The DARPA red balloon challenge7 was a highly publicized instance of hu-
man computation— in the sense of a distributed network of human sensors—
that required incentivizing the rapid mobilization of a large number of partic-
ipants on a social network. The challenge, run in December 2009, consisted of
locating ten 8-foot high red balloons that had been moored at ten unknown
locations throughout the US; the first team to correctly identify the locations
of all ten balloons would receive a cash prize of $40,000. For a team to win
the challenge, it was necessary not only to recruit members who would look for
and report sightings of the balloons themselves, but also to incentivize recruits
to further recruit team members, since increasing the number of searchers in-
creased a team’s chance of quickly locating the balloons. That is, in addition
to the problem of incentivizing participation, a team also had to incentivize
incentivizing further participation. The recursive incentive scheme used by the
winning MIT team to split the prize money amongst its participants is described
and analyzed in [PPR+11], and highlights some of the issues that arise in the
context of incentives in human computation tasks on social networks where per-
formance, albeit not available reward, scales with the number of participants.

Another interesting family of problems related to incentives in human com-
putation (broadly defined) occurs in online knowledge sharing or question-
answer forums, such as Y! Answers, StackOverflow, or Quora, where questions
posed by users are answered by other users of the site. There is a growing
literature addressing a range of questions related to incentives and strategic

7http://archive.darpa.mil/networkchallenge/
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behavior on such online Q&A forums in a game-theoretic framework, includ-
ing what reward structures elicit quicker answers from users [JCP12], how to
allocate attention rewards8 amongst contributors [GM12], as well as regarding
the implementability of outcomes (i.e., the number and qualities of answers re-
ceived) by the ‘best-answer’ style mechanisms used by Q&A forums such as Y!
Answers [GH12].

We now proceed with an analysis of incentives and strategic behavior in three
human computation settings — we discuss Games with a Purpose in §2.1, de-
signing mechanisms for crowdsourced judgement aggregation in §2.2, and voting
in the context of human computation in §2.3.

2.1 GWAPs

Games with a Purpose (GWAPs) [vAD08] are an outstanding family of examples
of successful human computation systems. GWAPs are games designed so that
people who are ostensibly simply playing the game also simultaneously produce
useful input to a computation or task which cannot be performed by computers
alone. For example, the game Verbosity9 matches two players, who both ‘win’ if
the first player correctly guesses the word being described by the second player
(who, of course, is forbidden from directly using the word). This gives the second
player the incentive to produce good descriptions to successfully communicate
the word, thereby generating word descriptions in the process. Another game
TagATune10 pairs two players, both of whom receive a sound clip and generate
descriptions for their clips to decide whether they have the same clip or not—
since players ‘win’ when they correctly determine whether or not they have the
same clip, this creates incentives for both players to generate descriptive labels
for their clips, leading to a useful set of labels for sound clips in the system.

The first and perhaps best known GWAP is the ESP game11, which cloaks
the task of labeling images under the guise of a game. In the ESP game, two
randomly paired players are given an image; both players are asked to generate
single-word descriptions for that image. Players gain points when they agree
with their partner on a descriptive word, or label, for the image (neither player
can see her partner’s choices until the two players have entered a common label).
Since players do not know who their partner is because they are randomly paired
by the game, they cannot coordinate on descriptions, and so the easiest way to
agree on the output (i.e., a label for the image) is to base it on the input (i.e.,
the image itself). Thus the game design aligns the incentives of the players, who
want to earn points, with that of the system, which is to generate descriptive
labels for images.

But does it? The ESP game has been tremendously successful in terms of
participation— it was played by over 200,000 people, collecting over 50 million
tags [vAD08] in approximately 4 years since its creation. This high participa-

8(by choosing which answers to display, and how often or prominently to display them)
9http://www.gwap.com/gwap/gamesPreview/verbosity/

10http://www.gwap.com/gwap/gamesPreview/tagatune/
11http://www.gwap.com/gwap/gamesPreview/espgame/
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tion makes it evident that the basic incentives were well-designed— fun was
clearly a valid reward, and the game clearly generated adequate ‘fun’ reward
to compensate for the effort involved in playing the game. But what about
the quality of the labels generated? It has been observed, both anecdotally and
in a more careful study by Weber et al [WRV08], that the labels obtained for
images in the ESP game tend to have a high percentage of colors, synonyms, or
generic words— essentially, labels that do not necessarily contribute too much
information about the image, and are perhaps not the most useful labels that
could be collected by the system. As we see next, a game-theoretic model and
analysis of the ESP game can help explain how the specific choices made for the
rules of the game encourage the creation of such tags, and also suggests changes
to the game design which might address this issue.

Consider a simple model [JP13] for the ESP game. Each player indepen-
dently chooses one of two effort levels (low or high) to exert while playing the
game. A player who chooses low effort samples labels from the most ‘frequent’,
or common, set of words in the universe (such as colors, or generic common
nouns), whereas a player choosing high effort samples labels from the entire
universe of words; assume that players know the relative frequencies of each
word they have sampled. Next, a player can choose in what order to output her
sampled words (which are the labels she thinks of for the image). How do the
rules of the ESP game affect what effort levels players choose, and the order in
which they output words?

The ESP game design rewards players as follows. Each pair of players are
matched for a set of 15 images, and try to label as many images as they can
achieve agreement on in 2.5 minutes. For each image, both players enter a
sequence of single-word descriptions and can move on to the next image as soon
as they enter a common descriptive word, which then becomes the label for the
image. Players receive points for each such successful labeling. Since players
can see more images (thereby potentially earning more points, since points are
awarded per labeled image) if they agree quickly on a descriptive word for each
individual image, the 2.5 minute time limit means that players would prefer to
‘match’, or agree on a label, as early as possible in their sequence of descriptive
words for each image. Thus the design of the ESP game induces players to have
utilities that can be described as match-early preferences [JP13], where each
player obtains a higher utility from ‘matching’ earlier rather than later with
her partner. What kind of player behavior, and correspondingly what kind of
labels, can be expected from such ‘match-early’ preferences induced by the ESP
game design?

Theorem 2.1 ([JP13]) (Informal.) With match-early preferences, choosing
low effort and returning labels in decreasing order of frequency (i.e., from most
common to least common) is a Bayes-Nash equilibrium in the ESP game.

Further, it turns out that under reasonable restrictions on strategy choices,
such undesirable equilibria, where players coordinate on common words, are the
only Nash equilibria12 in the ESP game. This result helps explain exactly how

12A Nash equilibrium is a set of strategies, one for each player, such that no player can
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the design choices, i.e., the specific rules of the ESP game, might lead to the
observed outcomes of common or generic labels for images.

Now suppose rewards are instead designed so that the number of points
received by a pair of players depends not just on the number of matches, but
also on the quality of each match, based on the frequency of the agreed-upon
label. Such a reward scheme, where a player’s utility depends not on when
the match occurs (i.e., at which point in the sequence of words output by
the player), but rather on the frequency of the matched label, induces rare-
words preferences. How does changing the reward structure to remove the ‘need
for speed’, and so that agreeing on rare labels leads to higher rewards, affect
equilibrium outcomes?

Theorem 2.2 ([JP13]) (Informal.) With rare-words preferences, returning
labels in decreasing order of frequency (i.e., common words first) is a strictly
dominated13 strategy. Returning words in increasing order of frequency (i.e.,
least common words first) is an ex-post Nash equilibrium in the ESP game,
conditional on both players choosing the same level of effort.

That is, such a change in the reward design leads players to ‘try’ the rarer words
in their sample first, leading to more useful labels than those obtained under
the equilibrium strategy of trying more common words first under match-early
preferences. This change in design alone, though, is not adequate to induce
effort— high effort sampling need not be an equilibrium strategy in the ESP
game even when rewards are modified to induce rare-words preferences. If,
however, the distribution of words in the dictionary from which samples are
drawn is Zipfian (as is the case for the English language), and if the rewards are
designed so that utilities additionally obey a certain (multiplicative or additive)
structure, high effort sampling followed by coordination on rare words now
becomes an equilibrium in the game.

This analysis of the ESP game demonstrates both (i) how a game-theoretic
model and analysis can explain and pinpoint in what way a particular design
choice for the game leads to the observed outcomes of low-information labels
(arising from coordination on common words), and (ii) what kind of reward
redesign can lead, under what conditions, to high-effort coordination on rare
words. In the next subsection, we investigate another family of human compu-
tation systems where a formal analysis of incentives can aid the design of reward
mechanisms that induce desirable behavior from participants in the system.

2.2 Crowdsourced Judgement Elicitation

An increasingly prevalent application of human computation is in the domain
of using the crowd to make evaluations, or judgements. Suppose each of a set of
objects has one of many possible properties or belongs to one of many categories,

benefit by deviating from her strategy given the strategy choices of other players; see, for
instance, [NRTV07].

13A strategy is strictly dominated if there is another strategy that always leads to larger
payoffs regardless of other players’ choices, i.e., for all possible strategies of other players.
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and the task is to judge, or evaluate, what property the object has or which
category it belongs to— for instance, categorizing galaxies or identifying birds
(as in Citizen Science projects), deciding whether some text content is abusive
or an image is pornographic, or deciding whether a homework assignment is
correct or incorrect, or what score it should get. When the number of objects
to be evaluated is too large for a single expert and the evaluation cannot be
accurately performed by a computer, a human computation-based solution is
to replace the expert’s opinion by an aggregate evaluation based on judgements
from a ‘crowd’ of non-experts, typically recruited via some online platform.
Crowdsourced judgement elicitation is now used in a wide range of applications
including image classification, identifying adult content online, rating learners’
translations on the language-learning site Duolingo, and most recently for peer
grading in online education, where Massively Open Online Courses (MOOCs)
with huge enrollments crowdsource the problem of evaluating homework assign-
ments back to the students in the class.

Consider a worker, say, on Amazon Mechanical Turk who is classifying im-
ages, or a Duolingo user who has been asked to rate another user’s translation
into his native language. Such a worker could potentially just arbitrarily cat-
egorize the object (an image, a translation, and so on) into some category—
incurring no effort cost, or alternately, she can put in effort to properly evalu-
ate the object. If the system could check the accuracy of the worker’s output
(e.g., the correctness of her categorization), and reward based on accuracy, the
worker might be incentivized to put in effort into making judgements more
accurately— but the reason for using human computation, of course, is that
the system does not have this information in the first place. Given that the
only source of information about the ground truth— the true category for each
object— is judgements from the crowd, how should the system reward agents
based on the received reports?

This question is related, although not the same as, the growing literature on
mechanisms for information elicitation, also pertinent to human computation.
Broadly, that literature addresses the question of designing mechanisms that
incentivize agents to truthfully reveal information they already happen to pos-
sess, such as their opinions about a product or service (as in the peer-prediction
literature [MRZ05]), or their beliefs about the probabilities of an event (as in
prediction markets, a literature by now too vast to properly discuss here (Chp.
26, [NRTV07]). The problem encountered in the crowdsourced judgement elic-
itation domain is somewhat different than the one addressed by this literature,
since here agents (workers) do not already possess the information they are being
asked to share— they must expend an effort cost to acquire that information in
the first place. Of course, having acquired the information, the reward structure
additionally needs to induce agents to truthfully report what they observe.

Given both formal studies [IPW10] and anecdotal reports14 of effort-shirking
by raters under ad-hoc or output-independent reward structures in real-world
systems, there is a need for mechanisms that will incentivize agents to exert

14such as in Duolingo and peer-grading systems
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effort to make useful judgements on their tasks. Suppose an agent’s utility is
the difference between the reward she receives, and the cost of the effort she
puts in, aggregated over all the tasks she performs. A mechanism for judgement
elicitation in such human computation settings should make it ‘most beneficial’,
if not the only beneficial strategy, for agents to not just report their observations
truthfully, but to also to expend effort to make the best observations they can
in the first place, rather than simply making arbitrary reports. Also, it is even
more important here to ensure that the payoffs from an outcome where all
agents blindly and consistently report the same observation (such as declaring
all content to be good) are strictly smaller than the payoffs from truthfully
reporting observations of the actual input, since declaring all tasks to be of
some predecided type (without even observing the input) requires no effort and
therefore incurs no cost, whereas actually putting in effort to make observations
about the input will incur a nonzero cost. [DG13] provide a simple model
for this setting of crowdsourced judgement elicitation with unobservable ground
truth, where an agent’s proficiency— the probability with which she correctly
evaluates the underlying ground truth (i.e., the true category or property of
the object)— is determined by her strategic choice of how much effort to put
into the task. They provide a mechanism— a set of rules which determines
how to allocate rewards to agents— M , for binary information elicitation for
multiple tasks when agents have such endogenous (i.e., strategically determined)
proficiencies, that has the following properties.

Theorem 2.3 ([DG13]) Exerting maximum effort into making judgements,
followed by truthful reporting of observations is a Nash equilibrium in mechanism
M. Further, this is the equilibrium with maximum payoff to all agents, even
when agents have different maximum proficiencies, can use mixed strategies,
and can choose a different strategy for each of their tasks.

Informally, the main idea behind the mechanism M is to use the presence of
multiple tasks and ratings to estimate a reporting statistic that identifies and
penalizes blind, or low-effort, agreement— since the only source of information
about the ground truth comes from agents’ reports, it is natural to use agreement
as a proxy for accuracy, and reward an agent for agreement with another agent’s
evaluation of the same task. However, rewarding only for agreement can lead to
low-effort equilibria with high payoffs (for instance, where all agents report the
same observation independent of the input and therefore always agree), which
is undesirable. The mechanism M therefore does reward agents for agreeing
with another ‘reference’ report on the same task, but also penalizes for blind
agreement by subtracting out a statistic term, which is based on the extent
of the agreement that would be ‘expected anyway’ given these agents’ reports
over all the other tasks they rate. This statistic term is designed so that agents
obtain nonzero rewards only when they put in effort into their observations, and
so that reward is increasing in effort: this yields the maximum payoff property
of the full effort-truthful reporting Nash equilibrium.

This crowdsourced judgement setting thus demonstrates another instance in
which game-theoretic models and mechanism design provide useful input into
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the incentive-centric design of a broad family of human computation systems,
where— given the accounts of effort shirking by raters under ad-hoc or output-
independent reward structures in real-world systems— properly incentivizing
agents is key to obtaining worthwhile, or valuable, input from the humans in
the system.

2.3 Aggregating quality estimates: Voting

We illustrate a third kind of incentive problem in human computation by exam-
ining settings where user ratings are used to compute the (absolute or relative)
quality of online content, such as photographs on Flickr, reviews on Amazon
or Yelp, shared articles on Reddit, and so on. Rating and ranking are natural
applications for human computation— in all the examples we just mentioned,
it is hard for a computer to accurately process the task at hand, which is infer-
ring content quality or rankings (for example, how does Flickr know whether a
photograph is appealing?), whereas humans can easily accomplish the task.

Where do incentives and game theory come in? In a number of such voting
or rating contexts, the set of people producing ratings is not disjoint from, and
often has high overlap with, the set of people producing the content or objects15

to be rated (for example, consider a community of photographers such as on
Flickr, who both post photos themselves, and rate other contributors’ photos).
Since having a high relative rating for one’s own content is desirable (highly-
ranked content receives more attention, which seems to be clearly desired by
contributors), a contributor who is rating other contributions might have an
incentive to strategize her votes so as to increase her relative ranking— for
instance, by downvoting other highly-rated contenders. A natural question then
is the following: Is it possible to design a scheme for aggregating ratings that
can ‘get at’ the true qualities, or perhaps the true underlying ranking of objects,
or identify the set of the k-best objects, when the creators of the objects being
rated are also the raters?

A simple abstract model for this problem is studied in [AFPT11]. Suppose,
for simplicity, that the set of raters is exactly the same as the set of creators of
the content; abstractly, this can be modeled by a voting scenario where the set of
agents who vote are identical to the set of candidates being voted on16. Consider
a directed graph over this set of n agents, where an edge from agent i to agent
j is taken to mean that i ‘upvotes’ or supports (for example, likes the content
produced by) agent j17. Suppose the system wants to find the k most popular
agents— for example, a site might want to prominently display the k most
popular contributions. Each agent is only interested in being selected in this
set of k ‘winners’, and so may misreport its opinions, or ratings, to this end. A

15Note that these objects can also be the producers themselves, rather than only the content
produced, as might be the case when constructing rankings of users based on their contribu-
tions in some online community.

16An example of such a situation, outside of the context of human computation or the
Internet, is the election of the pope in the papal conclave.

17For readers familiar with the voting literature, this setting is a special case of approval
voting where the set of voters coincides with the set of options.
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mechanism in this setting is a way to aggregate the set of votes from the n agents
into a set of k selected agents. Is it possible to design a mechanism which is
simultaneously strategyproof— i.e., where no agent can benefit by misreporting
which other agents she approves (or does not approve) of, i.e., her edges— as
well as approximately optimal, in the sense that the total number of votes on
the chosen set of k agents is ‘close’ to (i.e., not much smaller than) the total
votes for the k most popular agents? [AFPT11] analyze strategic behavior in
this model to first show a surprising impossibility result:

Theorem 2.4 ([AFPT11]) For any number of agents n ≥ 2, and any number
of winners k between 1 and n − 1, there is no deterministic strategyproof k-
selection mechanism with a finite approximation ratio.

However, [AFPT11] constructs a randomized mechanism (i.e., where the choice
of the set of k winners also depends on the outcome of some random coin tosses)
which is both strategyproof, and selects a reasonable set of agents:

Theorem 2.5 ([AFPT11]) For any k between 1 and n−1, there is a random-
ized k-selection mechanism that is both strategyproof, and has an approximation
ratio18 no worse than 4; this mechanism is approximately optimal as k diverges.

Together, these results, based on a formal analysis of strategic behavior in
a simple voting model, establish the tradeoffs that the designer of a human
computation-based rating or ranking system should expect to find when dealing
with self-interested users— while no simple (i.e., deterministic) mechanism for
aggregating ratings can be both strategyproof and optimal for all inputs, there
exists a more complex (randomized) mechanism that can eliminate any benefits
from misreporting while also not compromising the quality of the winner set too
much, especially as the size of that set diverges.

3 Incentivizing consistent effort: Gamification
and game theory

In the previous section, we saw the role of formal game-theoretic analysis and de-
sign in three human computation contexts— specifically, we saw how rewards,
or benefits, for particular tasks can be restructured to provide incentives to
agents to undertake the ‘right’, i.e., system-desired, behaviors. In this section,
we will discuss an application of game-theoretic techniques to a broader class
of incentives for participation: an increasing number of human computation
systems are now accompanied by corresponding online communities, with dis-
cussion forums, leaderboards, reputation scores, and various other features, all
of which also provide rewards (typically of a social-psychological nature) to par-
ticipants, albeit not for performance on a particular task. While our previous
analyses looked at incentives and cost-benefit tradeoffs from a single action or
contribution, there are also rewards that relate directly to the identity of a

18That is, the set of winners obtains at least 1/4 as many votes as the k most popular agents
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contributor typically based on her overall contribution, rather than to single
actions or contributions. In this section, we will discuss very recent work on
formal approaches to designing incentives that motivate overall contribution in
human computation systems via their communities19.

A common theme in a growing number of online communities and social
media sites relying on user contributions is gamification— via badges, leader-
boards, and other such forms of (competition or accomplishment based) social-
psychological rewards. These rewards, meant to provide an incentive for par-
ticipation and effort on a given system or site, usually reflect various site-level
accomplishments based on a user’s cumulative ‘performance’ over multiple con-
tributions. Such badges or top-contributor lists clearly appear to motivate users,
who actively pursue and compete for them—for example, users on StackOverflow
are observed to increase their effort levels when they get close to the contribution
level required for a badge [AHKL13], and there are entire discussion communi-
ties on the Web centered around how to break into Amazon’s Top Reviewer list
or how to maintain a Top Contributor badge on Yahoo! Answers, while users
who have just earned entry into top contributor lists often find an increased
number of negative votes from other users attempting to displace them.

Given that the rewards created by these virtual badges and leaderboards
appear to be valued by users (a phenomenon that appears to be quite gen-
eral, occuring across a range of online communities) and that participating and
putting in the effort required to obtain them is costly, a particular way of allo-
cating these rewards creates a corresponding set of incentives, or more formally,
induces a mechanism in the presence of self-interested contributors. So gamifi-
cation also involves reasoning about incentives in a game-theoretic sense— given
that there are several different ways to ‘gamify’ a site, how should these rewards
for overall contribution be designed to incentivize desired levels of contribution?
For instance:

1. What incentives are created by mechanisms induced by an absolute stan-
dard of output that must be met to earn a badge (such as a threshold
number of images that must be tagged, or questions that must be an-
swered), and what incentives are created by a competitive, or relative,
standard, such as top-contributor badges or leaderboards? And how do
these ‘compare’?

2. When badges are awarded for meeting absolute standards, should multiple
badges be awarded, and if yes, how should they be ‘placed’ relative to each
other in terms of the accomplishments required to earn successively higher
levels of badges?

3. Consider a very simple form of a relative standard, corresponding to hand-
ing out an (identical) ‘top-contributor badge’ to some set of ‘best’ contrib-
utors on the site. How exactly should badges for competitive standards
be specified—should the site award some fixed number of top-contributor

19For a broad set of general guidelines on incentivizing participation and engagement in
online communities, see [KRK+12].
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badges independent of the number of actual participants, such as a Top
10 Contributors list (call this mechanism Mp

ρ), or should the number of
winners be some fraction of the number of actual participants (mechanism
Mc

ρ)? Note that since participation in all these human computation sys-
tems is a voluntary choice, the number of actual contributors is not fixed
apriori, but rather is determined by the choices made by self-interested
users— so these two specifications are not equivalent.

This family of questions brings us to the frontiers of research on game the-
ory for human computation, which we summarize below. First we address the
questions about what kinds of incentives are created by absolute and relative
standards mechanisms. Call the awarding of badges for achieving some absolute
standard, say α, of output (such as receiving α positive ratings for one’s contri-
butions, or labeling α images correctly), an absolute standards mechanismMα.
Call the awarding of badges for belonging amongst some set of top ρ contrib-
utors to the site a relative standards mechanism Mρ. [EG13] investigates the
existence and nature of equilibrium outcomes in these two classes of mechanisms
in a simple game-theoretic model where users who value badges (presumably
for social-psychological reasons), and have a cost to effort, strategically choose
whether to participate and how much effort to put into the site20.

[EG13] find that even the existence of equilibria for relative standards mech-
anismsMρ depends on how the number of top contributor awards ρ is specified
(i.e., whether there are a fixed number of top-contributor badges that will be
awarded, or whether the number of badges scales as a fraction of the number of
actual participants)— this is due to endogenous participation, i.e., the fact that
users make a voluntary choice about whether to participate depending on the
rewards being offered. While the two versions of the relative standards mecha-
nism behave identically for ρ lying in a certain range, the result below suggests
that at least for settings that are reasonably captured by the model in [EG13],
the mechanism corresponding to announcing a fixed number of top-contributor
badges that is independent of the number of actual participants is a more robust
mechanism than one that declares some fraction of participants to be winners,
i.e., where the number of winners scales with the number of actual contestants.

Theorem 3.1 ([EG13]) (Informal.)

1. For relative standards mechanisms Mρ, equilibria exist for all values of
ρ > 0 if the site specifies ρ as a fraction of potential contributors, i.e.,
as a fixed number of winners, but not if ρ refers to a fraction of actual
contributors.

2. For absolute standards mechanisms Mα, equilibria exist for all possible
values of the standard α. However, there is a maximum standard αmax

such that the only equilibria for all standards higher than αmax involve
zero participation, leading to no contributions.

20An equilibrium here consists of some level of participation and some level of effort from
participants, such that no participant can benefit from either dropping out or choosing to
exert a different level of effort, and no non-participant would prefer to participate.
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This equilibrium analysis suggests an interesting contrast between using rel-
ative and absolute standards for rewarding overall contribution— while Mp

ρ

elicits non-zero participation in equilibrium for every value of ρ > 0, Mα can
lead to zero equilibrium participation when α is too large. However, there is also
a partial equivalence between absolute and relative standards Mα and Mp

ρ, of
the following form. Every absolute standard α ≤ αmax leads to an equilibrium
outcome that is identical, in terms of induced effort and participation, to the
equilibrium outcome in the relative standards mechanism with some appropri-
ate value of ρ ∈ [ρmin, 1), where ρmin > 0 is the equilibrium fraction of winners
at the standard αmax— and in fact, the value of ρ that elicits the maximum
effort from contributors occurs at a relative standard ρ that lies in this range
[ρmin, 1). So for a site designer who wants to optimize elicited effort, and has ad-
equate information about the parameters of the population to choose an optimal
value of the standard α or ρ, the absolute and relative standards mechanisms
are equivalent. In the absence of such information, however, or with uncer-
tainty about the population’s parameters, a ‘top contributor’ style mechanism
Mp

ρ based on competitive standards that always elicits non-zero equilibrium
participation might be, informally speaking, more desirable than an absolute
standards mechanism.

Finally, we ask a question about multiple badges— consider badges that are
handed out for absolute achievements. At what levels of achievement should
badges should be awarded to to sustain effort on the site, and how should they be
designed to steer user behavior towards different actions on the site? [AHKL13]
address this question in a model where there is a multi-dimensional space rep-
resenting the possible types of actions on the site. Users have a time-discounted
value to earning badges and incur a cost when they choose actions from a distri-
bution that differs from their preferred mixture of actions on the site. If users
act to maximize their utility in this model of costs and benefits, how should
badges be placed to align ideal user behavior with users’ utility-maximizing ac-
tions? [AHKL13] finds that the effectiveness of badges in inducing desirable
behavior depends significantly on their ‘placement’ (i.e., for what level of con-
tribution they are awarded), with the optimal location being, roughly speaking,
one that is hard to achieve and therefore motivates users for a significant length
of ‘time’ (contributions). Also, multiple badges should be ’spread out’ with
roughly equal values, rather than placing them at nearby levels of contribution,
suggesting that multiple smaller rewards provide more effective incentives than
a small number of larger rewards at least in settings that are well-described by
the model in [AHKL13].

The literature on a game-theoretic approach to overall contributor reward
design is very young, and has looked at the most immediate questions under
relatively simple models and reward structures. There are a number of ques-
tions still to be modeled and answered, an immediate one being the design of
leaderboards. In contrast to top-contributor badges, not all ‘winners’ receive
equal rewards in leaderboards since arguably, the reward from placing first (or
say in the top 5 positions) is somewhat larger than, say, ranking 100th on the
leaderboard, even in a site with a large population. A number of interesting
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game-theoretic questions arise, starting from the very basic question of how
many positions the leaderboard should have to optimally elicit effort from con-
tributors; this question is related to our motivating example early in this chap-
ter, and a first step towards such questions, although in a model with perfectly
observable outputs, is taken in [GM12].

Finally, a commonly used reward structure is that of user reputations. The
question of how to design—and use and update— user reputations to create the
right incentives in a human computation system is one that can draw from a
vast body of literature on the design on reputation systems (Chp 27, [NRTV07]),
but comes with challenges unique to human computation systems that will re-
quire the development of convincing new models and schemes 21: In addition
to differences in details from the models in prior work on reputation systems
(for example, in the context of electronic marketplaces such as EBay or Ama-
zon), there are also potentially fundamental differences that might arise due to
the differences in the nature of the rewards that agents seek from these sys-
tems, which are primarily financial in online marketplaces but to a large degree
social-psychological (such as status or reputation within a community) in human
computation systems. We briefly explore these ideas in §4.

4 Challenges and further directions

In the previous sections, we saw how a game-theoretic, or more broadly, an eco-
nomic approach, can help with analyzing strategic behavior and incentive design
in human computation systems. But there remain many challenges, unique to
such online contribution domains, that need to be understood before we can fully
develop the game-theoretic foundations for incentives in human computation.
First, of course, there are a number of immediate questions regarding theoreti-
cal modeling and analysis. In addition to questions we have already alluded to
in previous sections, there is also an interesting family of problems arising from
the diversity of roles that participants play in many systems (for example, con-
tribution versus moderation in an online community). How should incentives be
designed to ensure that each participant is incentivized to properly contribute
to her role(s) in the system, given that different roles might require different
incentives, and that these incentives could potentially interact with each other?
A principled framework that helps answer this question will need to begin with
new models that appropriately capture such multi-role participation as well as
interactions between different sets of incentives— an issue relates, at least in
spirit, to the question of what incentives are created by simultaneously using
different forms of gamification on a site. A further question along these lines,
arising from the voluntary nature of participation, is how to structure incentives
to also induce different potential participants to choose their socially optimal
roles in the system.

In addition to problems related to modeling and theoretical analysis, there
are also a number of cross-disciplinary questions. One family of problems lies

21For preliminary work on social norms for reputation, see [HZVvdS12].
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at the interface of game theory and interaction design. By influencing usability,
and usage, the design of the user interface in a human computation system
also interacts with incentives in a game-theoretic sense— after all, any game-
theoretic analysis involves modeling the behavior of the agents (i.e., users) in
the system, which is determined not only by its rules for reward allocation but
also by its interface. As a very simple example, consider a system that rewards
contributors based on the quality of their outputs, as measured by the ratings, or
votes, provided by users who view these contributions. An interface design which
leads to very little rating by users (for example, a hard-to-find rating button
or an overly complex menu of options), or one that leads to ambiguity in the
meaning of a rating (such as a thumbs-up button which is interpreted by some
users to mean ‘Helpful’ and others to mean ‘I agree’) results in ‘noisier’ ratings
than an interface which elicits meaningful votes from a large number of users. A
greater degree of noise, roughly speaking, means that reward depends on effort
in a more uncertain way, which in turn affects the incentives for agents to put in
effort in the system. It is easy to see that even in this specific example there is
much more to consider at the interface of interaction design and incentives, such
as the question of which users are allowed to rate contributions, and whether
raters are offered a more or less expressive set of ratings to choose from. Another
example of the connection between interaction design and game theory can be
found in the context of badges and gamification— how much information about
users’ behavior and performance is revealed to other users can potentially affect
users’ valuations of badges, and consequently their strategic choices; see §5.3
in [EG13]. Generally, therefore, how users respond to a given mechanism in a
strategic or game-theoretic sense, as well as the space of available mechanisms
itself, can depend on the choice of interface in the interaction design phase—
an ideal design paradigm would take into account both the influence of the
user interface and the reward allocation rules on user behavior to provide an
integrated, complete approach to the design of incentives in human computation
systems.

Finally, a very important family of questions relate to properly understand-
ing contributor motivations and rewards in a more nuanced fashion. One par-
ticularly interesting issue that is pertinent to most human computation systems
is that of mixed incentives: unlike in most traditional economic analysis, hu-
man computation systems typically involve a mixture of potential contributor
rewards. Systems with financial rewards for contributing, such as Amazon Me-
chanical Turk, mix two entirely different kinds of rewards (financial and social-
psychological); even in systems without financial incentives, there are usually
multiple social-psychological rewards, either intrinsic or site-created: for in-
stance, [vAD08] describes fun as the primary motivator in the ESP game, but
there are also social-psychological rewards from leaderboards (competition) as
well as from successful ‘collaboration’ with partners on the image labeling task.

How do people— the agents in a game-theoretic model— value these differ-
ent kinds of rewards in combination, and also, how do they value them relative
to each other? What happens when virtual points are used to create an economy
with money-like properties (a currency for exchange of goods and services), ver-
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sus using virtual points to create psychological rewards (such as status)? Second,
how do social-psychological rewards, even individual ones, aggregate in terms of
the perceived value to contributors? While utility from money— both in terms
of value as a function of total wealth, and the change in value of wealth with
time— is a relatively well-studied subject in the economics literature, very little
is known or understood about how social-psychological rewards aggregate, and
how they retain (or gain or lose) value over time; also, unlike financial rewards,
this could be partially controlled by system design. Understanding how multiple
rewards influence incentives when they occur simultaneously in a system, and
how social-psychological rewards provide value —starting with understanding
agent preferences from a behavioral economics perspective, and then integrating
this understanding into formal game-theoretic models— is an essential compo-
nent to a strong foundation for incentive design for human computation, and
one of the most exciting directions for future work in this area.

References

[AFPT11] N. Alon, F. Fischer, A. Procaccia, and M. Tennenholtz. Sum
of us: strategyproof selection from the selectors. In Proceedings
of the 13th Conference on Theoretical Aspects of Rationality and
Knowledge (TARK), 2011.

[AHKL13] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec.
Steering user behavior with badges. In 22st International World
Wide Web Conference (WWW’13), 2013.

[DG13] A. Dasgupta and A. Ghosh. Crowdsourced judgment elicitation
with endogenous proficiency. In Proc. 22nd ACM International
World Wide Web Conference (WWW), 2013, 2013.

[EG13] D. Easley and A. Ghosh. Incentives, gamification, and game the-
ory: An economic approach to badge design. In Proc. 14th ACM
Conference on Electronic Commerce (EC), 2013, 2013.

[GH12] A. Ghosh and P. Hummel. Implemeting optimal outcomes in social
computing. In Proc. 21st ACM International World Wide Web
Conference (WWW), 2012, 2012.

[GM12] A. Ghosh and R.P. McAfee. Crowdsourcing with endogenous entry.
In Proc. 21st ACM International World Wide Web Conference
(WWW), 2012, 2012.

[HZVvdS12] C. Ho, Y. Zhang, J. Vaughan, and M. van der Schaar. Towards
social norm design for crowdsourcing markets. In Proc. AAAI
Workshop on Human Computation, 2012.

17



[IPW10] P. Ipeirotis, F. Provost, and J. Wang. Quality management on
amazon mechanical turk. In Proceedings of the ACM SIGKDD
Workshop on Human Computation (HCOMP), 2010.

[JCP12] Shaili Jain, Yiling Chen, and David Parkes. Designing Incentives
for Online Question-and-Answer Forums. Games and Economic
Behavior, 2012. Forthcoming.

[JMM12] Lian Jian and Jeffrey K. MacKie-Mason. Incentive-centered design
for user-contributed content, 2012.

[JP13] S. Jain and D. Parkes. A game-theoretic analysis of the esp game.
ACM Transactions on Economics and Computation, Jan 2013.

[KRK+12] R. Kraut, P. Resnick, S. Kiesler, Y. Ren, Y. Chen, M. Burke,
N. Kittur, J. Riedl, and J. Konstan. Building Successful Online
Communities: Evidence-Based Social Design. The MIT Press,
2012.

[MRZ05] N. Miller, P. Resnick, and R. Zeckhauser. Eliciting informative
feedback: The peer-prediction method. Management Science,
pages 1359–1373, 2005.

[NRTV07] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani. Algorith-
mic Game Theory. Cambridge University Press, New York, NY,
USA, 2007.

[PPR+11] Galen Pickard, Wei Pan, Iyad Rahwan, Manuel Cebrian, Riley
Crane, Anmol Madan, and Alex Pentland. Time-critical social
mobilization. Science, 334:509–512, 2011.

[vAD08] L. von Ahn and L. Dabbish. Designing games with a purpose.
Commun. ACM, 51(8), 2008.

[WRV08] I. Weber, S. Robertson, and M. Vojnovic. Rethinking the esp
game. 2008. Technical Report, Microsoft Research.

18


