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Privacy and coordination: Computing on databases with endogenous
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We propose a simple model where individuals in a privacy-sensitive population decide whether or not to participate in
a pre-announced noisy computation by an analyst, so that the database itself is endogenously determined by individuals’
participation choices. The privacy an agent receives depends both on the announced noise level, as well as how many
agents choose to participate in the database. Each agent has some minimum privacy requirement, and decides whether or
not to participate based on how her privacy requirement compares against her expectation of the privacy she will receive
if she participates in the computation. This gives rise to a game amongst the agents, where each individual’s privacy if she
participates, and therefore her participation choice, depends on the choices of the rest of the population.

We investigate symmetric Bayes-Nash equilibria, which in this game consist of threshold strategies, where all agents
whose privacy requirements are weaker than a certain threshold participate and the remaining agents do not. We character-
ize these equilibria, which depend both on the noise announced by the analyst and the population size; present results on
existence, uniqueness, and multiplicity; and discuss a number of surprising properties they display.

1. INTRODUCTION
In today’s data-driven world, we encounter an increasing number of settings where substantial and
varied information about individuals—from contact information, to purchase histories, to emails,
financial data, medical data, opinions, locations, actions, and beyond—is aggregated and used. The
Internet has made such data increasingly easier to obtain, and advances in databases and machine
learning are rapidly improving the usefulness of this avalanche of data, allowing for better pre-
dictions, recommendations, and advertising (to name just a few of the many applications). Simul-
taneously, completely new uses for data— such as mobile health applications, or applications for
well-being based on social data— are being invented using emerging technologies. From the per-
spective of an individual, these advances are a mixed blessing— one can certainly derive benefits
from improved information aggregation, for example in the form of more accurate polling data or
better suggestions of what movie to watch next. But there also are risks in sharing one’s data: from
malicious or accidental breaches, from poor anonymization techniques and other leaks, from un-
wanted inferences, and—perhaps most importantly—from threats that have not yet been discovered
or imagined, leading each person to have their own level of discomfort or disutility from sharing
their data.

There is by now a vast and rich literature on database privacy, particularly within the powerful
framework of differential privacy. The main setting typically considered there is one where an ana-
lyst has access to a database of individuals’ information and wishes to perform a computation with
specific properties. Informally, the goal of the analyst is usually to optimize the quality of the output
of the computation (according to some specific quality metric) while guaranteeing the individu-
als in the database a particular level of differential privacy. Recent work more carefully considers
the incentives of the individuals in such a computation, proposing a variety of utility models that
incorporate privacy considerations [Ghosh and Roth 2011; Xiao 2013; Chen et al. 2011; Nissim
et al. 2012a; Ligett and Roth 2012], and laying the groundwork for the field of privacy-preserving
mechanism design [McSherry and Talwar 2007; Xiao 2013; Chen et al. 2011; Nissim et al. 2012b,a;
Huang and Kannan 2012; Kearns et al. 2012].

The realities of sharing personal data, however, have not kept pace with the advances in the formal
study of privacy. Real-world situations involving the use of personal data typically say (at best) how
an individual’s data might be used, rather than promise a privacy guarantee, and an individual’s
option is (at best) to decide whether or not to agree to part with her data, rather than negotiate
compensation for its use. In fact, a typical user might not even want— or be able to— specify
such a compensation, although the typical user is likely to be able to say whether or not she would
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be willing to share her data in any given scenario. Also, in many cases, one might argue, privacy
comes not from a formal guarantee, but from a sense that one is likely safer ‘hiding’ in a larger
crowd. In this way, one can view the decision of whether to participate in a computation emerge
as an equilibrium between the potential participants—if others participate, perhaps I will too, and
not much will be learnt about any of us. In this way, both privacy guarantees and participation
decisions (and thus the database of participants itself) become an endogenous aspect of the model
of computation. How should one think about privacy and accuracy in this new world of endogenous
privacy and endogenous participation?

Our contributions. Our main contribution is a simple model where a privacy-sensitive population
with privacy requirements decides whether or not to participate in a pre-announced noisy compu-
tation by an analyst, so that the database itself is endogenously determined by agents’ participation
choices. We model individuals as agents who each have some minimum privacy requirement that
must be met for them to be willing to participate in any computation on their private data. An an-
alyst announces a computation, along with the form and variance of the noise he will add to the
outcome; this noise is some pre-decided quantity that is fixed prior to any participation decisions.
The privacy an agent receives in this computation depends on both this noise as well as how many
agents choose to participate in the database. Agents then make their participation decisions based
on whether their expectation of how much privacy they will receive—given the announced compu-
tation and added noise, and their predictions about other agents’ participation choices—meets their
privacy requirement. (Note that there is no agent-specific compensation or payment to induce partic-
ipation; agents participate simply if they are comfortable with the privacy they expect for their data,
and do not participate otherwise). This gives rise to a game amongst the players, since whether an
individual receives adequate privacy or not, and therefore participates or not, depends on the partic-
ipation decisions of the remaining agents in the population. This model, of proposing a computation
rather than a specific privacy guarantee, seems to us quite salient in that most real-world computa-
tions on sensitive data do not come with explicit formal privacy guarantees; also, by assuming only
that individuals make a single binary decision about their privacy, we make minimal, fairly robust
assumptions on how individuals reason about privacy.

Despite our focus on simplicity, to understand the nature of the trade-offs that can arise in such
situations we necessarily must choose a concrete formal framework for privacy, and assume that
agents can reason strategically to arrive at equilibrium outcomes. We analyze this privacy coor-
dination game in a model where each individual has a differential privacy requirement ri that is
drawn from a commonly known distribution of privacy requirements F (r), and each agent makes
her participation decision based on her expected privacy when the remaining agents, with privacy re-
quirements drawn from F , decide whether or not to participate according to some (known) strategy.
We investigate symmetric Bayes-Nash equilibria in this game which consist of threshold strategies,
where all agents whose privacy requirements are weaker than a certain threshold participate and
the remaining agents do not. Our model and equilibrium analysis raise a number of subtleties that
arise when computing on databases with endogenous participation, even when there are no correla-
tions between individuals’ privacy requirements and their data. First, an analyst might benefit from
offering to add more noise than some ‘bare minimum’—while adding higher noise has the direct
effect of increasing inaccuracy, it could also potentially lead to a much larger subset of the popu-
lation participating in the database, resulting in a final outcome that actually better approximates
the true function of the population. Second, while it is natural to expect that adding more noise will
lead to higher participation, this may not be the case, and equilibrium participation can potentially
worsen with added noise. This happens precisely due to the presence of multiple equilibria, some of
which improve with added noise as expected, whereas others become worse. However, the equilib-
rium corresponding to the highest participation improves with added noise, for any population size;
we also demonstrate the existence of, and identify, a range of noise variances for which there is a
unique equilibrium for any fixed population size. Finally, we show that, roughly speaking, equilib-
rium outcomes improve and converge towards full participation with diverging population size for
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a reasonable range of noise parameters. We conclude in §4 by discussing how an analyst might use
information about participation to improve performance and address some of the issues that arise
from equilibrium multiplicity and the Bayesian information model.

1.1. Related work
An exciting literature has emerged on a variety of topics at the intersection of privacy, game theory
and mechanism design. One fruitful line of inquiry has considered privacy-preserving mechanism
design [McSherry and Talwar 2007; Nissim et al. 2012b; Xiao 2013; Chen et al. 2011; Huang and
Kannan 2012; Nissim et al. 2012a], focusing on approximately- and exactly-truthful differentially
private mechanisms. Some of this work also raises very interesting considerations in modeling the
costs to individuals of privacy losses (for those works and additional papers that treat the topic see,
e.g., [Kleinberg et al. 2001; Ghosh and Roth 2011; Xiao 2013; Chen et al. 2011; Nissim et al. 2012a;
Ligett and Roth 2012]).

Closest to the present work is the recent literature on modeling and designing mechanisms for
computation in settings where truthful reporting of data is not a concern, but where the data is
sensitive and privacy losses incur a cost that must be appropriately compensated, at a rate that is
private information and that agents can lie about [Ghosh and Roth 2011; Fleischer and Lyu 2012;
Roth and Schoenebeck 2012; Ligett and Roth 2012; Dandekar et al. 2012]. The present paper differs
from previous work in two main ways. First, our analyst simply announces a noisy computation, and
does not attempt to elicit any costs from agents; there are no sophisticated mechanisms, analyst-
supplied privacy guarantees, or individual-specific compensation for privacy costs. In the face of
the announced noisy computation, each individual makes only a single binary participation decision.
Second, as a result of the computation announced, a coordination game naturally emerges, allowing
us to isolate the phenomenon of hiding-in-a-crowd that is naturally suggested by privacy in a game-
theoretic model, and analyze its equilibrium behavior.

There has also been work on the design of markets and pricing schemes for personal data (rather
than for privacy-preserving computation on that data (see, e.g., [Laudon 1993; Aperjis and Hu-
berman 2012; Gkatzelis et al. 2012; Li et al. 2012]); on private equilibrium release [Kearns et al.
2012]; on a variety of approaches to running auctions in order to prevent unnecessary information
about bids from being leaked (see, e.g., [Naor et al. 1999; Brandt and Sandholm 2008; Feigenbaum
et al. 2010]); and on various other economic aspects of privacy (see, e.g., [Isaacman et al. 2011;
Feigenbaum et al. 2012]).

The setting we study is clearly closely related to games studied in the economics literature, in-
cluding public goods games (cf. [Varian 1994]), coordination games, and externalities;1 despite
these commonalities, there are significant differences between previous work in these areas and our
model, arising due to the specific problem we study. For example, although the private computation
in our setting has some characteristics of a public good, our concern here is not just whether anyone
chooses to participate (analogously, whether the public good is funded), but how many people par-
ticipate; similarly, individuals in our setting base their participation decisions on others’ expected
participation and do not receive assurance contracts [Bagnoli and Lipman 1989; Edlin et al. 1998]
(and hence do risk receiving less privacy than expected; see §3.6 for discussion).

2. MODEL
There is a population ofN agents, each of whom holds data of interest to an analyst. TheseN agents
are the potential participants in the database that the analyst would like to perform a computation
on, to learn some statistic about the population—the analyst would like his computation to return
an answer close to that of the true computation on the full set of data from the entire population of
sizeN . The analyst does not already hold the data from the population—agents will choose whether
or not to contribute their data to the database if they are ‘satisfied’ with the privacy they expect to

1See, e.g., [Fudenberg and Tirole 1991; Leyton-Brown and Shoham 2008] or any standard text on game theory for discussion
these subjects.
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receive. We let n denote the number of actual participants in the database; naturally, n ≤ N , the
number of potential participants.

The analyst announces the computation he will perform on the participating agents’ data, where
by announcing the computation we mean that the analyst specifies what function will be applied to
the data collected from individuals, as well as some pre-specified modification that will be made
to the output to ensure (some degree of) privacy to agents. We suppose that this modification is
independent of the actual number of participants, n—for example, the analyst might specify that
he will add a particular form of random noise with variance µ where µ is some fixed quantity
(dependent, perhaps, on the range in which the data is known to lie).

Given this announced computation, the actual privacy that each agent receives will depend on
both the announced computation (including the specified modification), as well as typically the
number of other agents who participate in the computation. The possible dependence on the number
of agents arises because the analyst is interested in a function whose output does not scale with n
(such as the mean), and the modification (such as the amount of noise added) is fixed independent
of the number of actual agents who participate; thus, if a larger number of agents participate, each
agent receives greater privacy.

Our agents are simple—they each have some minimum privacy requirement, and will partici-
pate in the computation if the privacy they expect to receive satisfies their requirement, and not if
it doesn’t (in addition to being a natural model for participation decisions, such threshold-based
decisions arise naturally from existing utility models of privacy in the framework of differential
privacy, as we will discuss shortly). Agents make participation decisions based on the announced
computation and their own privacy requirement, leading to some realized database with n ≤ N
participants. The analyst then performs the promised computation on the subset of the population
who contributed to the database. The analyst’s utility from the outcome of this computation depends
on (i) the modification (such as the degree of noise perturbation) in the announced computation, and
(ii) the size of the subset of the population that chose to participate in the computation. Intuitively,
there is a potential trade-off here—a small announced modification will lead directly to less inac-
curacy in the computation, but could also induce much lower participation and lead indirectly to
higher inaccuracy, due to a small sample size, with respect to the true function estimated from the
entire population N (which is the analyst’s ideal).

Alternative modeling choices. One might naturally wonder about alternatives to our model of a
pre-announced computation, and of privacy requirements. A first alternative modeling choice might
be to announce a privacy guarantee itself, rather than announce a computation and perturbation. We
do not choose this model for two reasons: (i) An analyst might not be willing or usefully able to
perturb the output to the extent required to deliver on this privacy guarantee if participation is too
low, and (ii) a typical user might be more likely to be able to decide whether or not she wants to
participate in a given announced computation, than to parse or evaluate, a given guarantee. (We note
here that analyzing outcomes in this setting will necessarily require that we use a formal framework,
and that we assume users can reason rationally about their privacy requirements; however, within
these constraints we adopt the simplest model of user behavior and privacy requirements possible).

A second alternative is one where an agent’s privacy requirement is specified simply in terms
of the number of other agents she needs in the database to be willing to participate, to capture the
game between agents and the notion of hiding in a crowd. However, as we will see shortly, this
number depends on the computation and the extent of the noise announced by the analyst—that is,
two different computations and levels of added noise will lead to different degrees of privacy even
with the same number of fellow participants. So any such specification must be a function of the
added perturbation as well, at which point the two models become equivalent.

2.1. A mathematical model
We now set up a formal mathematical model for this setting, where for concreteness we need to make
modeling choices regarding agent privacy requirements, the computation the analyst is interested in,
and the noise he adds.
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Privacy requirements. Our first modeling choice is to use the framework of differential privacy
as agents’ notion of privacy. (A brief overview of differential privacy and noise addition to achieve
differential privacy, as well as a discussion of the specific nature of the privacy guarantees in our
model, is in §2.3.) An agent’s privacy requirement, given the differential privacy framework, is some
real number greater than or equal to zero. (If desired, such threshold-like privacy requirements can
be interpreted naturally as the choice of expected-utility maximizing agents in existing models for
privacy costs in the literature; see §2.2.)

An agent with privacy requirement ri participates in an announced noisy computation if her
expected differential privacy guarantee is p ≤ ri (for concreteness, we break ties in favor of
participation—i.e., an agent participates even if p = ri). We assume that the privacy requirements
of agents all lie in some interval [rmin, rmax], where rmin ≥ 0 (we allow rmax = ∞, in which
case the interval is [rmin,∞)) and denote agent i’s privacy requirement by ri. We will suppose
that each agent’s privacy requirement is randomly drawn from a distribution F (r) with support on
[rmin, rmax]; we will assume for our analysis that F is continuously differentiable and strictly in-
creasing on its support. Note that this distribution F is a distribution on privacy requirements and
not on the data individuals hold, which is immaterial in our analysis.

Analyst’s desired computation and added noise. We model each individual’s private data as a
real number ∈ [0, 1]. We suppose the computation of interest to the analyst is a low-sensitivity
real-vector-valued computation on the population, such as a mean, or normalized histogram, com-
putation. For such computations, since the impact of any one individual on the output decreases
as the number of participants increases, adding Laplace noise with fixed standard deviation ∼ 1

ε
to the true value of the computation on the participants gives a differential privacy guarantee that
improves with the total number of participants n as ε/n.2 Informally, a larger value of ε corresponds
to a lower level of added noise, and therefore less inaccuracy but also less privacy to participants.

Therefore, each agent makes her participation decisions based on whether she expects ε/n to
be smaller than ri or not; we describe agents’ participation choices, information model, and the
corresponding game and solution concept in §3. (The fact that a game arises does not depend either
on our modeling choices of a differential privacy framework or addition of Laplace noise—it arises
for any notion of privacy and privacy-inducing modifications as long as the modification announced
is fixed and independent of the elicited participation; however, the specific structure of the game
will depend on the formulation used.)

Remark. In this paper, we will assume that agents’ privacy requirements ri are independent
of the actual data they hold, so that the accuracy of the final computation depends only on the
number, rather than the specific subset, of agents that choose to participate. This assumption is not
without loss of generality, and indeed there are settings (such as those involving sensitive medical
data) where an agent’s desire for privacy could well be correlated with her data. However, there
are also other settings, such as collecting data on the Internet regarding (for example) browsing or
shopping behavior, mobile applications for social health, or polls in online communities, where no
particular data (or choice or behavior) is more or less incriminating or embarrassing than another—
the differences in desired privacy levels arise simply because different people have different degrees
of discomfort with sharing or revealing information about themselves, whatever that information.

2.2. Deriving requirement thresholds from a utility model with privacy costs
In this section, we show how threshold-like privacy requirements—making participation decisions
by comparing expected privacy against a requirement ri—arise directly when rational, expected-
utility maximizing, agents make participation decisions in a simple utility model with privacy costs
(as in prior literature, see e.g. [Ghosh and Roth 2011; Fleischer and Lyu 2012]). We note, though,
that none of our results rely on this interpretation: our results only use the fact that each user has
some minimum privacy requirement, no matter what its origin.

2See § 2.3 for discussion of Laplace noise and low-sensitivity computations.
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Suppose an agent has a value v for the output of the computation, and a privacy cost that scales
with the privacy guarantee that she receives from the computation. Suppose, for simplicity, that
this privacy cost is linear in the level of differential privacy ε as in, e.g., [Ghosh and Roth 2011]:
c(ε) = cε. Then, the agent obtains utility v − cε when she participates in the computation and
receives privacy ε. That is, her utility is nonnegative whenever

v − cε ≥ 0, or ε <
v

c
= r.

Also, suppose there is a distribution on outcomes, with different numbers of participants, resulting
in a distribution on the privacy guarantees received in each of those outcomes. The expected utility
to the agent is

E[u] = E[v − cε] = v − cE[ε],

so that

E[u] ≥ 0⇔ E[ε] ≤ r.
Thus, an agent will receive nonnegative expected utility if and only if her expected privacy guarantee
E[ε] ≤ r.

Suppose that this benefit from the computation only accrues to participants (as, for instance in
applications that use data to provide personalized recommendations or outputs) when they have
contributed data to the computation. Then, the utility from nonparticipation is zero, since the benefit
and cost are both zero (since an agent who does not contribute her data receives perfect differential
privacy, i.e., ε = 0 (see §2.3)).

Therefore, an agent who is only making participation decisions will choose to participate if her
expected privacy from participation is less than her threshold ri, and not otherwise:

E[ε] ≤ ri.
Remark. We focus in this paper on mechanisms which only allow agents to make participation

decisions—that is, we do not attempt to elicit agents’ costs for privacy, or even just their thresholds.
Rather, we assume that agents simply make the decision of whether to participate or not—while this
simplifies analysis, a more significant reason is that a typical person is unlikely to be able to state a
quantitative privacy requirement if asked, but is likely to also be able to say whether or not she is
willing to share her data in any given scenario.

2.3. Modeling privacy
We consider preserving the privacy of individuals’ data (we do not suppose that their privacy re-
quirements are sensitive, as these are uncorrelated with their data), and so we think of an individual
i’s row in a database—corresponding to her data di—as her piece of the input to a mechanism that
preserves differential privacy. We say that two databases D,D′ are neighboring if they differ in at
most one row. A guarantee of ε-differential privacy [Dinur and Nissim 2003; Dwork and Nissim
2004; Dwork et al. 2006] for a mechanism M requires that for all neighboring pairs of databases
D,D′ and for any possible outcome a of the mechanism, the following holds:

Pr[M(D) = a] ≤ exp(ε) Pr[M(D′) = a].

The sensitivity of a function is the maximum by which the value of that function can change under
any two neighboring databases. The mean and the normalized histogram have sensitivities 1/n and
2/n, respectively, where we recall that n denotes the number of actual participants. The scaled
symmetric exponential distribution with standard deviation

√
2/ε, denoted Laplace(1/ε), has mass

at x proportional to exp(−|x|ε). By the properties of Laplace noise [Dwork et al. 2006], the noisy
computation announced by the analyst, wherein she adds noise ∼ Laplace(1/ε) to a computation
with sensitivity ∼ 1/n, preserves ε

n -differential privacy.
We note here that the differential privacy parameter ε is indeed an imperfect metric by which to

model privacy costs. In particular, since differential privacy provides a worst-case guarantee (over all
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possible other members of the database), differential privacy is perhaps most useful as a pessimistic
bound on privacy costs—under reasonable models, an individual’s actual disutility from privacy loss
when a differentially private computation is run on a specific input database may be less than that
predicted by differential privacy. The threshold model we adopt helps sidestep this concern, since
each individual’s threshold may reflect her interpretation of the expected level of privacy provided
by the announced additive noise.

We emphasize that differential privacy is merely one possible privacy framework and we choose
it for concreteness; the idea of databases with endogenous participation could be applied more
generally to other kinds of “hiding in a crowd” requirements—for instance, agents may simply need
some minimum number of other agents contributing their data to feel comfortable about contributing
their own.

3. EQUILIBRIUM ANALYSIS
We now analyze the nature of equilibrium participation when allN potential participants have com-
mon prior beliefs about the privacy requirements of the population, but only know their own actual
privacy requirement with certainty. Specifically, every agent i knows the distribution F (r) from
which all other agents’ privacy requirements are drawn, but not their actual draws; she observes her
own draw ri. (Again, we emphasize that this distribution F is a distribution on privacy requirements
and not on the data individuals hold, which do not figure anywhere in our analysis.) Recall that
the distribution F has support on [rmin, rmax], and is assumed strictly increasing and continuously
differentiable on its support, with bounded density f(r).

Agent i makes her decision about whether or not to participate in the computation based on her
own draw ri from F , knowledge of F and N (the total number of potential participants),3 and her
beliefs about other agents’ participation choices, as follows. Suppose all other agents use a strategy
s(r) to decide whether or not they will participate as a function of their privacy requirement r. Agent
i participates if her expected differential-privacy guarantee p(s(r), N, ε), meets or is better than her
own privacy requirement ri, where the expectation is taken over agents’ random draws of rj from
F .

For a given set of N − 1 iid draws from F (r), let n(s(r)) denote the number of these remaining
N − 1 agents who participate under the strategy s(r). Then, agent i participates if her expected
differential privacy guarantee from participating, p(s(r), N, ε) = E[ ε

n(s(r))+1 ],4 satisfies p ≤ ri,
and does not participate otherwise (recall that we assume throughout that an agent who is indifferent
between participating and not breaks ties in favor of participation.)

Symmetric Bayes-Nash equilibria. We will focus on symmetric strategies. A strategy s(r∗) consti-
tutes a symmetric Bayes-Nash equilibrium if no agent can improve her expected utility by deviating
from s(r) and making her participation decisions according to a different strategy ŝ(r), when the
remaining N − 1 agents all make their participation decisions according to s(r). 5

3.1. Characterizing symmetric equilibria
We first define threshold strategies.

Definition 3.1. A threshold strategy s(r∗) is a strategy where an agent i participates if her pri-
vacy requirement ri is greater than or equal to the threshold r∗, and does not participate otherwise.

3The assumption that agents know N is justifiable in some settings and less so in others, and we leave open the problem of
exploring uncertainty or unknown N as a direction for further exploration
4Here, the expectation is taken over the (N − 1) other players’ draws from F .
5We choose a Bayes-Nash equilibrium analysis since it is more reasonable to expect that individuals have some idea about
the nature of the population’s privacy sensitivities rather than to expect that they actually know other agents’ privacy require-
ments as in a full-information setting, especially since an individual typically will not even know the identities of the other
players in the game. A setting where the analyst reveals other agents’ participation decisions is another natural choice for the
information model, and is one we discuss briefly in §4.2.
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We will, without loss of generality, restrict our agents to using threshold strategies. This is be-
cause agent i’s unique best response for any given strategies of other agents is a threshold strategy:
consider the threshold r∗i (s(r)) = p(s(r), N, ε) = E[ ε

n(s(r))+1 ]. If agent i participates when she
has requirement r, by definition r ≥ p(s(r), N, ε) = r∗i (s(r)), and conversely an agent does not
participate if r < p(s(r), N, ε). So agent i participates iff r ≥ r∗i (s(r)), which is a threshold
strategy with threshold r∗i (s(r)).

A threshold strategy equilibrium is one where all agents whose privacy requirements are above a
certain threshold r∗ participate and all agents with stricter privacy requirements, i.e., with require-
ments below r∗, do not participate, and no agent can benefit by deviating from this strategy. We
have the following easy lemma.

LEMMA 3.2. A threshold strategy s(r∗), r∗ ∈ (rmin, rmax), is a symmetric Bayes-Nash equi-
librium iff E[ ε

n(r∗)+1 ] = r∗, where n(r∗) is the binomial random variable denoting the number of
the N − 1 agents who draw values ri ≥ r∗ .

PROOF. An agent should participate iff ri ≥ p(s(r∗), N, ε) = E[ ε
n(r∗)+1 ], where the last term is

the expected privacy to the agent whenN−1 other agents participate according to threshold r∗. For
r∗ to be an equilibrium, every agent with ri ≥ r∗ must obtain expected privacy weakly better than
her requirement, i.e., less than or equal to ri, and every agent with ri < r∗ must expect to receive
privacy strictly worse (i.e., greater) than ri from participating. So r∗ is an equilibrium threshold iff
r∗ = E[ ε

n(r∗)+1 ].

We abuse notation to let p(r,N, ε) denote the expected privacy to an agent from participating when
all other agents use a threshold strategy s(r). The next result characterizes equilibrium thresholds.

THEOREM 3.3. For any given N and ε, and a distribution F :

(1) rmin is an equilibrium threshold iff ε
N ≤ rmin.

(2) A value r∗ ∈ (rmin, rmax] is an equilibrium threshold if and only if it satisfies the following
condition:

ε

N

1− FN (r∗)

1− F (r∗)
= r∗. (1)

PROOF. The first statement follows immediately since at r∗ = rmin, all agents participate so
p(rmin, N, ε) = ε

N , and this is an equilibrium iff ε
N ≤ r for all r ∈ [rmin, rmax].

For the second statement we evaluate p(r,N, ε). The differential privacy when n agents partic-
ipate is ε

n , and each of the remaining N − 1 agents participates with probability 1 − F (r) when
the threshold is r. Noting that 1 − F (r) > 0 for r ∈ (rmin, rmax) (since F is strictly increasing,
F (r) < F (rmax) = 1), we have

E
[ ε
n

]
= ε

N−1∑
k=0

1

k + 1

(
N

k

)
(1− F (r))kF (r)N−1−k

=
ε

N(1− F (r))

N−1∑
k=0

(
N

k + 1

)
(1− F (r))kF (r)N−1−k

=
ε

N(1− F (r))
(1− FN (r)).

From Lemma 3.2, r∗ is an equilibrium threshold iff this expectation equals r∗, proving the result.

The function on the left-hand side in Theorem 3.3 appears repeatedly in our equilibrium analysis:

Definition 3.4 (p(r,N, ε)). The expected differential privacy guarantee with added
Laplace(1/ε) noise to a participating agent, when N − 1 other agents with privacy require-
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ments drawn from F participate if and only if their draws ri exceeds a threshold r, is

p(r,N, ε) =
ε

N

1− FN (r)

1− F (r)
.

We will sometimes drop the arguments N, ε when the values of N, ε are clear from context.

The following two propositions lead to monotonicity properties of p(r,N, ε) that are used repeatedly
in our equilibrium analysis.

PROPOSITION 3.5. The function 1−xN

N strictly decreases with increasing N for any x ∈ (0, 1).

PROPOSITION 3.6. The function 1−FN (r)
1−F (r) is increasing in r for r ∈ [rmin, rmax] and any N >

0.

3.2. Equilibrium existence
Having understood what values of r can constitute a threshold equilibrium, the first question we
address is existence of equilibrium. We will focus throughout on equilibria with non-trivial partici-
pation, i.e., with thresholds r∗ < rmax— the expected participation at a threshold equilibrium r∗ is
E[n] = N(1−F (r∗)), which is zero at r∗ = rmax. How does existence of equilibria with non-trivial
participation depend on the value of added noise ε, and population size N?

THEOREM 3.7. Consider any pair (N, ε). An equilibrium exists if ε/N ≤ rmin (at r∗ = rmin).
If ε/N > rmin, then

(1) There exists at least one equilibrium r∗ < rmax for all ε < rmax.
(2) For all ε ≥ rmax, there is either no equilibrium r∗ < rmax, or multiple such equilibria r∗,

except on a set of ε of measure zero.

PROOF. Recall that F is continuous, and note that the function

p(r) =
ε

N

1− FN (r)

1− F (r)
=

ε

N
(1 + F (r) + . . .+ FN−1(r))

is therefore continuous in r for all r ∈ [rmin, rmax].
The first statement follows immediately from Theorem 3.3. For the second, suppose ε/N > rmin.

An equilibrium exists at any value of r ∈ (rmin, rmax] at which p(r, ε) = r. At r = rmin, p(r, ε) =
ε
N > rmin by assumption. At r = rmax, p(r, ε) = ε, which is strictly smaller than rmax if ε < rmax.
Therefore, p(r, ε) − r > 0 at r = rmin and p(r, ε) − r < 0 at r = rmax. Since p(r, ε) − r is a
continuous function of r on [rmin, rmax], and is positive at rmin and negative at rmax, it must cross
0 at least once in the interval [rmin, rmax] by the intermediate value theorem.

If ε > rmax, p(r, ε) − r is positive at r = rmin and r = rmax. So either (i) there is no value of
r at which p(r, ε) = r, or (ii) if p(r, ε) − r crosses 0 at some r to become negative, it must cross
0 again at some r′ > r since it must eventually be positive at r = rmax. The only situation where
there is a unique equilibrium is when p(r, ε) = r for a unique r ∈ (rmin, rmax), and ∂p(r,ε)

∂r = 1.
But this can only happen for exactly only value of ε because of the linear homogeneous dependence
of p(r, ε) on ε.

We note here that when ε < rmax, there is an odd number of equilibria, and when ε ≥ rmax, there
is an even number (including possibly 0) of equilibria, except on a measure zero set of ε (where the
function p(r, ε) is tangent to r at p(r)− r = 0, leading to equilibria without a zero crossing.)

The first question an analyst working with a population of size N might ask is at which values of
ε (the noise he offers to add) do equilibria exist. Our next theorem says that for any N , there is an
interval of ε values at which equilibria exist; the size of this interval grows with N .
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THEOREM 3.8. For any fixed N , the set of ε values for which an equilibrium with r∗ < rmax

exists is an interval with endpoints 0 and εe(N), where εe(N) ≥ rmax. (The interval is semi-open
and does not contain the right endpoint εe(N) if εe(N) = rmax, and is closed if εe(N) > rmax).
Further, εe(N) is increasing in N .

PROOF. We first argue that this set of ε values is an interval. Let ε1 be such that an equilibrium
r∗ < rmax exists, and consider any ε2 < ε1. First, if r∗(ε1) = rmin, rmin ≥ p(rmin, ε1) = ε1

N > ε2
N ,

so rmin is also an equilibrium for ε2. So suppose p(rmin, ε1)−rmin > 0, and p(rmin, ε2)−rmin > 0
also (since otherwise r∗(ε2) = rmin is an equilibrium). Note that since an equilibrium exists for ε1,
r ≥ p(r, ε1) for some r ∈ (rmin, rmax). But then p(r, ε2) < 0 at this r since p(r, ε) is strictly
decreasing in ε. So p(r, ε2) − r must cross zero by continuity, so an equilibrium exists for ε2, and
the set of ε for which an equilibrium exists is an interval.

Now, since an equilibrium with r∗ < rmax exists (by continuity of p(r)) iff

ε

N

1− FN (r)

1− F (r)
≤ r, or ε ≤ N r(1− F (r))

1− FN (r)

for some r ∈ [rmin, rmax), let

εe(N) = max
r∈[rmin,rmax]

N
r(1− F (r))

1− FN (r)
. (2)

Then an equilibrium with r∗ < rmax exists for all ε ≤ εe(N) if this maximum occurs at r0 < rmax,
and for ε < εe(N) if r0 = rmax; note that an equilibrium cannot exist for any ε greater than this
value.

Finally, the endpoint εe(N) defined by (2) is increasing in N by Proposition 3.5.

3.3. Monotonicity
Recall that the analyst’s utility depends on the noise ε via both a direct effect—from the inaccuracy
introduced by adding Laplace(1/ε) noise—and the extent of participation, n, elicited in equilibrium
when the announced noise perturbation is ε; a larger sample n should lead to a more accurate esti-
mate. We now consider a fixed population size N , and ask how expected equilibrium participation,
which is determined by the equilibrium threshold r∗, behaves as a function of the offered noise ε.

Our results here illustrate a non-intuitive fact about equilibrium behavior in this setting. A smaller
value of ε corresponds to more added noise—with a fixed number of participants, this should lead to
greater privacy for agents. So it is reasonable to expect that decreasing ε should cause more agents
to participate. However, as we will see, this need not always be the case—and in fact, it is usually
not the case, unless there is a unique equilibrium threshold. This unexpected behavior occurs due to
multiplicity of equilibria—while the ‘best’ equilibrium (the equilibrium with the highest expected
participation) improves with increasing added noise, there is typically another equilibrium threshold
whose value increases when there are multiple equilibria, at which expected participation drops
when a noisier computation is announced. We note that such multiple equilibria are not uncommon
in settings with externalities or network effects ( [Easley and Kleinberg 2010]), or in coordination
games , and in fact it is typical, even in our specific setting, for multiple equilibria to exist (even
with ε < rmax where Theorem 3.7 does not guarantee multiple equilibria—an easy instance of this
can be seen when F is the exponential distribution and N is not too large).

We formalize this behavior of equilibrium thresholds in the next two results.

Definition 3.9 (Best equilibrium r∗b ). We refer to the smallest value of r ∈ [rmin, rmax] that is
a threshold equilibrium as the ‘best’ equilibrium for given values of N, ε, and denote it by r∗b =
r∗b (N, ε) (note that this is the equilibrium with the highest expected participation). If there is no
solution to (1) in r ∈ [rmin, rmax], we define r∗b =∞.

THEOREM 3.10. The best equilibrium threshold r∗b (N, ε) is non-decreasing in ε for each N .
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PROOF SKETCH. Consider again the function p(r, ε)−r, and ε1 < ε2. If r∗b (ε2) =∞, i.e., there
is no r satisfying the conditions of Theorem 3.3 in [rmin, rmax], the statement holds vacuously. If
r∗b (ε2) = rmin, then r∗b (ε1) = rmin also, since p(rmin, ε1) < p(rmin, ε2) < rmin so that rmin is an
equilibrium from Theorem 3.3, and therefore the best equilibrium.

So suppose there is an equilibrium rmin < r∗b (ε2) ≤ rmax, so that p(r∗b (ε2), ε2) − r∗b (ε2) = 0.
Since ε1 < ε2, p(r∗b (ε2), ε1) − r∗b (ε2) < 0 (note that p(r, ε) is strictly increasing in ε for fixed
r). Now since p(r, ε) − r is ε

N > 0 at r = rmin, by continuity of p in r, there exists some r ∈
(rmin, r

∗
b (ε2)) at which p(r, ε1)− r = 0. Therefore, r∗b (ε1) < r∗b (ε2).

The possibility of worse equilibrium participation despite the increase in added noise arises
precisely because of the presence of additional equilibria beyond r∗b—as we just proved in The-
orem 3.10, the best equilibrium r∗b behaves as one would expect, with increasing amounts of
added noise leading to a decreased threshold and correspondingly increasing expected participa-
tion N(1 − F (r∗b )) (recall that we are considering a fixed population N ). However, at additional
equilibria with r∗ > r∗b , there can be an unexpected reversal of participation. In Theorem 3.11, we
state a sharper result than simply saying that equilibria can sometimes get worse, saying precisely
which equilibria have improving participation and which get worse; to state the result we first need
some notation.

Fix N and for a given ε, let r∗i (ε) denote the i-th smallest equilibrium threshold less than rmax,
i.e., the ith smallest solution to the equation p(r, ε) = r in the interval [rmin, rmax). Then, we have
the following result regarding the local behavior of the thresholds r∗i with ε (recall that the function
F is continuously differentiable, so p(r)− r is differentiable as well on [rmin, rmax)).

THEOREM 3.11. Fix N and ε, and suppose all solutions r∗i are zero crossings of p(r)− r = 0
for this N and ε. If the function p(r) − r crosses 0 sloping upward at r∗i , then adding more noise
(a decrease in ε) worsens the equilibrium, and if it crosses 0 sloping downward at r∗i , then adding
more noise improves the equilibrium. That is,

(1) If ∂
∂r (p(r, ε)− r) > 0 at r = r∗i , then r∗i (ε) is locally decreasing in ε.

(2) If ∂
∂r (p(r, ε)− r) < 0 at r = r∗i , then r∗i (ε) is locally increasing in ε.

PROOF SKETCH. First suppose that ∂
∂r (p(r, ε)− r) > 0 at r∗i . Then there exists δ small enough

so that p(r∗i − δ, ε)− (r∗i − δ) < 0, and p(r∗i + δ, ε)− (r∗i + δ) > 0. Note that for ε′ < ε, p(r∗i , ε
′)−

(r∗i ) < 0, since p(r, ε) is increasing in ε for fixed r. Now, because p(r, ε) is also continuous in ε,
the value δ can be chosen to be adequately small so that p(r∗i + δ, ε′) − (r∗2 + δ) > 0 also. Then,
we have that p(r, ε′) − r < 0 at r∗i (ε) and p(r, ε′) − r < 0 at r = r∗i (ε) + δ. So by continuity
of p(r) − r in r and the intermediate value theorem, there is a solution r∗i (ε′) to p(r, ε′) − r in
the interval [r∗i (ε), r∗i (ε) + δ], i.e., the corresponding equilibrium threshold at ε′ is larger than the
equilibrium threshold r∗i (ε).

The argument can be reversed for the case when the function is sloping downward at an equi-
librium threshold r∗i to show that for such equilibria, decreasing ε causes the solution r∗i to locally
decrease, i.e., equilibria corresponding to downward-sloping intersections of p(r)−r with 0 improve
with added noise.

We require the caveat about zero crossings, as opposed to being tangent to the x-axis, be-
cause of the numbering issue with the equilibria—if there is a threshold r∗i where p(r) − r is
tangent to 0, a threshold equilibrium near this r∗i fails to exist for perturbations of ε in one direc-
tion, and causes the numbering of the solutions to change in a way that leads to a discontinuity in r∗i .

Self-fulfilling expectations equilibria and stability. Suppose, rather than thinking of F as the
CDF of the distribution from which agents’ privacy requirements are randomly drawn, we imagine
that F (r) specifies the exact fraction of the population with privacy requirements below r (the anal-
ysis with this interpretation of F is not identical, but very similar to that we have presented so far).
Then a solution r∗ to the equation p(r,N, ε) = r is a self-fulfilling expectations equilibrium [Easley
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and Kleinberg 2010]: if the population believes that all individuals with privacy requirements weaker
than (i.e., above) r∗ will participate, this is exactly the set of individuals that will participate. It can
be shown that equilibria r∗ where ∂

∂r (p(r, ε) − r) < 0 correspond exactly to stable equilibria in
the sense that a dynamic process, where agents repeatedly revise participation decisions based on
realized privacy levels, converges to r∗ starting from any r near r∗. Similarly, unstable equilibria
are those where ∂

∂r (p(r, ε)− r) < 0.
Our theorem says that the equilibria that ‘behave well’, i.e., as expected in the sense of mono-

tonicity with respect to ε, are precisely the set of stable equilibria and the equilibria that ‘behave
badly’ are the unstable ones. We note here that this behavior is reminiscent of, and related to, the
‘correspondence principle’ [Samuelson 1983] regarding comparative statics and stability of equi-
libria in economics, although the specific structure of our model requires us to derive this behavior
directly for our setting.

3.4. Uniqueness
We have just seen that for a given population N , multiple equilibria may exist for at least some
values of ε. An analyst may prefer to use values of ε that do not support multiple equilibria (to
avoid the low participation corresponding to equilibria much larger than r∗b , and also because of
the undesirable monotonicity properties at some of these equilibria), choosing to optimally pick ε
from amongst the set of ε at which there is a unique equilibrium. We next investigate uniqueness of
equilibria as a function of ε for a given population N .

What does the set of ε at which there is a unique equilibrium look like? Unlike the set of ε values
at which an equilibrium exists, which is always an interval, the set of ε with unique equilibria need
not be an interval for general distributions F . However, this set does always contain an interval, the
upper endpoint εu(N) of which tends to rmax as N diverges. This interval thus grows to essentially
the largest possible set of ε with unique equilibria, since recall from Theorem 3.7 that there are
always multiple equilibria (if any exist) for ε > rmax for any N .

THEOREM 3.12. For any N , the set of ε values for which there is a unique equilibrium r∗ <
rmax contains an interval of the form [0, εu(N)]. Further, the upper bound of this interval converges
to rmax as N diverges: limN→∞ εu(N) = rmax.

PROOF. Consider ε ∈ [0, εe(N)] for which an equilibrium exists. For uniqueness, there should
be no solution to p(r) = r in the interval (r∗b (N), rmax), where recall that r∗b (N) is the best equi-
librium, or smallest solution to this equation in [rmin, rmax).

Now, since p(r) is increasing in r for any particular ε by Proposition 3.6, any solution to p(r) = r
for r ∈ (r∗b , rmax) must lie in the subinterval (r∗b , ε), since p(r) < p(rmax) = ε for all r ∈
(r∗b , rmax).

Since p(r∗b (ε), ε)−r∗b (ε) = 0, a sufficient condition for there to be no further solution to p(r, ε)−
r = 0 in this interval is if p(r,N) − r is decreasing in r on (r∗b , ε]; by the previous argument this
means there is no additional equilibrium in (r∗b , rmax) leading to uniqueness. For p(r) − r to be
decreasing on this interval, we need the derivative of p(r)− r to be negative for all r ∈ (r∗b , ε], i.e.,

h(r,N, ε) =
∂

∂r
(p(r, ε)− r) =

εf(r)

1− F (r)

[
1− FN (r)

N(1− F (r))
− FN−1(r)

]
− 1 < 0.

We now argue that for a particular N , the set of ε values satisfying this sufficient condition for
uniqueness is an interval, so that the set of values of ε with unique equilibria contains such an
interval. Note that if h(r, ε1) < 0 for all r ∈ [0, ε1], h(r, ε2) < 0 for all r ∈ [0, ε2] as well for any
ε2 < ε1: h is strictly decreasing in ε so h(r, ε2) < h(r, ε1) for all r, and we require h(r, ε2) < 1 to
hold on a subinterval of the interval [0, ε1] where h(r, ε1) < 1. Therefore the set of ε satisfying this
sufficient condition is an interval of the form [0, εu(N)].

To argue that limN→∞ εu(N) = rmax, we need to show that for any δ > 0, there is N large
enough such that |rmax − εu(N)| < δ. Consider any ε̄ < rmax − δ. From Theorem 3.16, we
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know that there is N(ε̄) large enough so that there is a unique equilibrium at ε̄ for all N ≥ N(ε̄).
Therefore for all N ≥ N(ε̄), εu(N) ≥ ε̄, since ε̄ belongs to the interval [0, εu(N)] for all such
N . Finally, ε(N) ≤ rmax for all N since there are either no equilibria or multiple equilibria for
ε ≥ rmax from Theorem 3.7.

Therefore |rmax − ε(N)| ≤ |rmax − ε̄| < δ, as required. So limN→∞ εu(N) = rmax.

We note here that multiple equilibria exist for ε > rmax even as the population size diverges
(that is, even a very large population cannot guarantee uniqueness for all values of ε)— this follows
immediately from Theorem 3.7.

3.5. Equilibrium behavior with diverging N

Finally, we investigate how agent participation in equilibrium behaves as a function of the popula-
tion size N . Is it always a good idea for the analyst to try to reach as large a potential population as
possible—how does participation in the best equilibrium behave as the population size grows, and
can we be sure to eventually obtain the high participation equilibrium for a large enough population,
i.e., how does the multiplicity of equilibria behave with diverging N? And, is it possible, for any
distribution of privacy requirements F , to eventually obtain participation from the entire population
of agents, for a large enough population?

We start with existence, where our first result says that for any ε the analyst may wish to choose,
however large, there is eventually a population size at which a non-trivial equilibrium threshold (i.e.,
with threshold strictly less than rmax and non-zero participation) exists.

THEOREM 3.13 (EXISTENCE). Consider any distribution F and any value of ε. There exists
N̂ = N̂(ε) such that there is a threshold equilibrium with r∗ < rmax for all N ≥ N̂ .

PROOF. Such an equilibrium exists if p(r,N, ε) − r = 0 for some r ∈ [rmin, rmax). We drop
the dependence on ε for the remainder of this section.

First, if rmin > 0, choose N large enough so that p(rmin, N) = ε/N < rmin: if p(rmin, N) ≤
rmin, then rmin is an equilibrium threshold from Theorem 3.3, and we are done.

So suppose rmin = 0. Consider some r0 ∈ (rmin, rmax), and note that r0 > rmin = 0, and
r0 < rmax so that F (r0) < 1. Let

N0 >
ε

r0(1− F (r0))
.

Then, for all N > N0,

p(r0, N) =
ε

N

1− FN (r0)

1− F (r0)
<

ε

N

1

1− F (r0)
< r0.

Therefore p(rmin) > rmin, and p(r0) < r0 for all N > N0, so by continuity of p(r)− r, there is at
least one solution to p(r) = r for r ∈ (rmin, r0), leading to a non-trivial equilibrium threshold as
desired.

While a (non-trivial) equilibrium always exists for large enough N , this equilibrium need not be
unique, as we have seen already. The following result, paralleling Theorem 3.10, tells us that even
when there are multiple equilibria, the best equilibrium r∗b (Definition 3.9)—corresponding to the
maximum expected participation—improves as the population N grows larger for any fixed ε.

THEOREM 3.14 (MONOTONICITY). Consider any distribution F and any fixed ε. The best
equilibrium r∗b (N) decreases monotonically with N .

PROOF. Let N̂(ε) be such that a non-trivial equilibrium r∗ < rmax exists for all N ≥ N̂ , and
note that r∗b (N) ≥ rmax by definition for all smaller N , i.e., N < N̂ . So we only need consider
values of N that are greater than N̂ .
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Consider N2 > N1 ≥ N̂ , and let r∗b (N1) and r∗b (N2) denote the corresponding best equilibrium

thresholds. From Proposition 3.5, 1−FN (t)
N is decreasing in N , so p(r,N) − r decreases as N

increases for any fixed r, and specifically for r = r∗b (N1):

p(r∗b (N1), N2)− r∗b (N1) < p(r∗b (N1), N1)− r∗b (N1) = 0.

Therefore, since p(r,N2)− r is ε/N2 is strictly greater than 0 at r = rmin and strictly smaller than
0 at r = r∗b (N1), p(r,N2) − r = 0 for some r ∈ [rmin, r

∗
b (N1)) by continuity of p(r) − r. So a

solution, and therefore the smallest solution, of p(r,N2) − r = 0 occurs in the semi-open interval
[rmin, r

∗
b (N1)), so that r∗b (N2) < r∗b (N1).

In fact, the best equilibrium not only decreases with increasing N , but converges to rmin in the
limit of a diverging population, as the next results shows—this means that in the limit asN diverges,
almost everyone in the population participates in the computation in equilibrium.

THEOREM 3.15 (LIMITING BEHAVIOR OF r∗b ). Fix ε. For any continuous F , the best equilib-
rium threshold r∗b converges to rmin in the limit as N →∞; the expected number of participants in
this equilibrium diverges as Θ(N).

PROOF. From Theorem 3.14, the sequence r∗b (N) is decreasing, and is bounded below by rmin.
Therefore the sequence r∗b (N) has a limit. Suppose this limit is distinct from rmin, say r∗b (N) →
c > rmin ≥ 0. with F (c) > 0.

The equation (1) satisfied by any equilibrium r∗, and therefore r∗b can be rearranged to:

r∗(1− F (r∗))

1− FN (r∗)
=

ε

N

if r∗ > rmin. (Since we assumed that r∗b converges down to c > rmin, this is the equation that must
be satisfied by r∗b (N) for all N , and the inequality that must be satisfied for r∗b = rmin does not
apply.) Since F is continuous,

lim
N→∞

r∗b (N)(1− F (r∗b (N)))

1− FN (r∗b (N))
=
c(1− F (c))

1− FN (c)
> 0,

whereas limN→∞
ε
N = 0, a contradiction. Therefore we must have limN→∞ r∗b (N) → rmin. The

statement about expected participation follows immediately because E[n] = N(1 − F (r∗b )) and
F (r∗b )→ 0 as r∗b → rmin since F is continuous and F (rmin) = 0.

As we observed when varying ε for fixed N , the multiplicity of equilibria again means that while
one would expect that equilibria should improve with increasing population size N , in fact not all
equilibria improve with N . The behavior of the equilibrium thresholds with N essentially follows
the same pattern in Theorem 3.11— for equilibria that arise from solutions to p(r,N)−r = 0 where
p(r) − r has a downward-sloping zero-crossing, increasing N improves the equilibrium threshold
and participation; whereas equilibria where p(r) − r has an upward-sloping zero-crossing become
worse with increasing N , displaying behavior contrary to the expected monotonicity. Stating the
result formally for N is tricky because N is an integer, so we do not have continuity of p(r,N) in
N—roughly, there might be no intersection with 0 as we move discretely fromN toN−1 orN+1;
hence, we omit a formal statement of the result. Again, this unexpected behavior due to multiplicity
of equilibria leads immediately to the question about uniqueness.

Our final result says that there is eventually a unique equilibrium for any given value of ε < rmax

(so that, for example, an analyst who has decided on some fixed ε can still hope for a unique
equilibrium by attempting to reach a large population N ); this solitary equilibrium is the one with
the nice properties described earlier. We note here that this condition on ε is essentially the best
possible, since from Theorem 3.7 there are always multiple equilibria (if any exist) for ε ≥ rmax.

THEOREM 3.16. [Uniqueness for large N .] Suppose ε < rmax. Then there exists N̄(ε) such
that there is a unique equilibrium threshold for all N > N̄(ε).
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PROOF. We want to prove that there exists N∗ such that for all N > N∗, there is no solution to
p(r) = r in the interval (r∗b (N), rmax), where recall that r∗b (N) is the best equilibrium, or smallest
solution to this equation in [rmin, rmax).

By assumption, ε < rmax.
Now, p(r) is increasing in r for any N (Proposition 3.6), and p(rmax) = ε. So any solution to

p(r) = r for r ∈ [r∗b , rmax) must lie in the subinterval [r∗b , ε), since p(r) < p(rmax) = ε for all
r ∈ [rmin, rmax).

Since ε < rmax, 1−F (ε) > 0 by assumption that F is strictly increasing. Let N1 be the smallest
integer such that

N1 >
1

1− F (ε)
.

Then, for all N ≥ N1,

p(ε,N) =
ε

N

1− FN (ε)

1− F (ε)
<

ε

N

1

1− F (ε)
< ε,

since 1
1−F (ε) < N1 ≤ N by choice of N1. Therefore, p(ε,N) < ε for all N ≥ N1.

Next we will choose N large enough so that p(r,N) − r is decreasing in r on [rmin, ε]. For
p(r) − r to be decreasing on this interval, we need the derivative of p(r) − r to be negative for all
r ∈ [rmin, ε], i.e.,

∂

∂r
(p(r,N)− r) =

εf(r)

1− F (r)

[
1− FN (r)

N(1− F (r))
− FN−1(r)

]
− 1 < 0.

Since f(r) and 1− F (r) are nonnegative, this is satisfied if

εf(r)

1− F (r)

[
1− FN (r)

N(1− F (r))

]
< 1

on the interval [rmin, ε]. By assumption f(r) is bounded everywhere on its support, say, by c. Note
that the function 1−FN (r)

(1−F (r)2) is decreasing in r for any fixed N using Proposition 3.6 and the fact that
1

1−F (r) is increasing in r. So let N2 be such that

N2 >
εc

1− F (ε)

[
1− FN (ε)

(1− F (ε))

]
,

so that for all N ≥ N2 and r ≤ ε, p′(r,N) < 1. (Note that we are not claiming that the derivative
p′(r) is monotone in r—we are simply saying that it is bounded away from 1 for all r ∈ [rmin, ε],
which again is possible because F (ε) is bounded away from 1 since ε < rmax by assumption.)

Now for N ≥ N2, we have that the derivative of p(r) − r is negative on [rmin, ε]. Note that
p(r,N) = r at r = r∗b (N) so that p(r,N) − r = 0 at r = r∗b (N), and p(ε) − ε < 0. Therefore
p(r,N) − r < 0 for all r ∈ (r∗b , ε] when N ≥ N2. But if we choose N ≥ max(N1, N2), then
this means that there is no equilibrium threshold in [r∗b , rmax), since for N ≥ N1 any solution to
p(r,N) = r in (r∗b , rmax) must lie in (r∗b , ε) and for N ≥ N2 we showed that there is no such
solution.

This proves the result with N̄ = max(N1, N2).

We note, however, the function N̄(ε) increases with ε, and diverges as ε→ rmax.

3.6. Privacy violation
The equilibrium thresholds r∗ we analyze arise from agents who make their equilibrium partici-
pation decisions based on the expected privacy they will receive, given that all other agents also
decide whether or not to participate based on the threshold strategy r∗. (Recall here from §2.2
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that comparing expected privacy against the requirement does indeed correspond to expected utility
maximization in a standard model of privacy.) However, it is possible, in an “unlucky” draw of pri-
vacy requirements ri from the distribution F , that the number of actual participants is smaller than
the expected number of participants E[ ε

n(r∗) ], and thus for the agents who do participate to receive
a weaker privacy guarantee than they had expected, and possibly even a worse guarantee than their
privacy requirement ri.

While all agents receive privacy that at least meets their requirement ri in expectation, what is
the probability that the actual privacy received in a particular instance is worse than an agent’s
requirement? We say that an individual i with requirement ri experiences a privacy violation if the
total number of participants, including herself, is smaller than ε

ri
. In an equilibrium with threshold

r∗, the probability that i receives privacy below her requirement is therefore the probability that at
most ε

ri
− 2 among the remaining N − 1 individuals participate, i.e., have privacy requirements

r > r∗. For the marginal individual with requirement ri = r∗, this probability of a violation (which
is the same as the probability that any other participating agent receives privacy below the expected
guarantee at equilibrium) is then

pv(F,N, r∗) =

ε
ri
−2∑

i=0

(
N − 1

i

)
(1− F (r∗))i(F (r∗))N−1−i,

as this is the probability that exactly 0 of the N − 1 others participate, plus the probability that
exactly 1 participates, all the way up to ε/r∗−2 others participating, which would leave the marginal
individual just shy of her privacy requirement.

If one is considering an equilibrium where limN→∞ r∗ = m > 0, i.e., the equilibrium thresh-
old is bounded away from zero from below by some constant m (for example, when rmin > 0),
and where in the limit F (r∗) is bounded away from 1 from above (i.e., at least some individuals
participate in the limit) we can upper bound this by

pv(F,N, r∗) ≤

ε
ri
−2∑

i=0

(
N − 1

i

)
(F (r∗))N−1−i,

whose limit behavior is then

O
(
(N − 1)

ε
m−2F (r∗)N+1− ε

m

)
,

which goes to 0 as N → ∞, so that the limiting probability of a privacy violation goes to zero as
well.

If in the limit r∗ is not bounded away from zero, however, the probability of a privacy violation
depends much more delicately on the rate of change of r∗ and F (r∗) inN . To illustrate this, consider
f is the uniform distribution on [0, 1] and ε = 0.2. Then the probability of a privacy violation can be
numerically observed to increase up to converge to a non-zero value, approximately 1.75 percent.
We discuss the question of providing privacy guarantees that meet the privacy requirements in every
instance, rather than in expectation, further in §4.2.

4. FURTHER DIRECTIONS
In this paper, we analyzed equilibrium existence and behavior in the game that arises naturally
when an analyst proposes a specific computation, and privacy-sensitive agents make simple binary
decisions about whether or not to participate based on the proposed computation. Our analysis
shows that there can be unexpected behavior in terms of non-monotonicities and multiplicity of
equilibria, leading to a first set of qualitative insights—for example, while one would expect that
offering to add more noise to the outcome should elicit higher participation, this need not be the
case; the results on noise values which support unique equilibria and the large population results
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suggest guidelines for an analyst on choosing noise values where these effects do not arise or are
mitigated.

A number of immediate questions arise in this setting, the most interesting of which are regarding
design—how might the game be modified so that outcomes are improved? We discuss some natural
directions for further work below.

4.1. Analyst utility
We have so far analyzed the equilibrium expected participation in the game that arises when indi-
viduals respond to to an announced computation ε based on their expectations about overall partic-
ipation and therefore the privacy they will receive. Consider now an analyst who wants to choose ε
to optimize his utility, to trade off the two sources of inaccuracy in her noisy computation: sample
error due to only receiving data from a subset of the population (recall that we assume individuals’
privacy requirements and their data are uncorrelated, so there is no concern of non-response bias),
and the direct inaccuracy introduced by the noise he adds. The equilibrium analysis we carried
out, particularly regarding existence and uniqueness of equilibria, are likely salient to an analyst
attempting to optimize his utility, since they provide a basis for estimating the nature and extent of
participation as a function of the announced noise ε.

To actually formulate an optimization in terms of ε, however, the analyst needs to choose an
appropriate metric to optimize, which will depend on his specific computation and its desired ap-
plication; in addition, there may also be setting-specific bounds on the noise level. He must also
specify how much disutility he incurs in the (typically non-zero-probability) event that no individu-
als participate, so that his computation simply cannot be run. Also, for regimes of (F, ε,N) where
multiple equilibria exist, there are different choices (worst-case or best-case, to name just two ex-
tremes) as to how he should analyze his expected utility; or, perhaps the analyst wishes to restrict
his optimization to ranges of ε where there exists a unique equilibrium. Our equilibrium analysis
provides the first inputs necessary for formulating such an optimization; however, a full formulation
requires a number of modeling choices which are application-dependent, and is left to future work.

4.2. Sharing information
A natural, and simple, tool available to an analyst who acts also as a mechanism designer, is to
share information about agents’ participation with other agents. As we discussed in §3.6, agents
in our model only receive privacy that meets their privacy requirements in expectation, and the
probability that the privacy received in a particular instance meets an agent’s requirement is less
than one for any finite population size. An analyst who wishes to ensure that all individuals receive
privacy guarantees that meet their requirements instance-by-instance, and not just in expectation,
might consider sharing information about other agents’ participation, for instance by keeping a con-
stantly updated public posting of the number of individuals who have elected to participate so far.
Individuals may then decide whether or not to participate based on whether the number of current
participants is adequate to give them the privacy guarantees they desire. Here, one can imagine two
natural situations, one where individuals arrive sequentially and have a single opportunity to par-
ticipate (given the information about the current number of participants), or where they are ‘always
present’ (such as, for example, on a website or application they use regularly) and may choose to
participate at any point. Note that if agents choose to use no distributional information and make
their participation decisions purely based on the number of current participants, assuming there will
be no further participants beyond themselves, each agent will definitely receive privacy that meets,
and is likely better than, her privacy requirement. But what is the effect of such publicly posted
information on equilibrium participation?

In either model of agent arrival, note that if ε ≥ rmax, there is no participation at all, since no
agent will be willing to be the first to participate. However, for ε < rmax (so that 1 − F (ε) >
0), expected participation in both models is very good: we can show that the expected number of
participants diverges in the limit asN goes to infinity, and grows as Θ(N), since the probability that
each individual participates is at least a constant. The question of how exactly participation grows,
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and how participation with sharing such information compares against participation in the Bayes-
Nash setting—both in the limit and for finite N—is an interesting question, and addresses the role
of information as a design choice in incentivizing participation from a privacy sensitive population.

4.3. Eliciting higher participation
A natural question to ask is whether there are other, more sophisticated mechanisms for eliciting par-
ticipation that lead to a larger subset of the population participating in equilibrium than that achieved
by simply announcing the computation and letting agents make choices based on their beliefs about
other agents’ privacy requirements. Sharing information, as we discussed above, is one such scheme.
But other schemes are possible as well, even without attempting to explicitly elicit agents’ privacy
requirements6. For instance, a mechanism might offer different levels of added noise to different
subsets of the population, or progressively announce different levels of added noise as agents grad-
ually announce participation. There is a vast space of mechanisms possible here, including (rather
than announcing computations) announcing privacy guarantees that improve progressively as more
and more agents sign up for the computation (so that the analyst is not promising to add an unaccept-
ably high level of noise at any stage in the mechanism). We note also that another possible method
for improving outcomes is equilibrium selection mechanisms for settings with multiple equilibria,
to induce the most desirable equilibrium with highest expected participation.

In this vein, it is also natural to ask how participation, both in our simplest setting of merely an-
nouncing the computation, as well as in other more sophisticated mechanisms, compares with nat-
ural benchmarks. For example, one natural benchmark to consider is the best possible participation
rate (or analyst utility) that could be achieved by a mechanism constrained to offer all individuals
the same privacy guarantee, if individuals’ privacy requirements were common knowledge—this
corresponds, for any given N , do finding the largest k such that the expected number of individuals
with requirements at or above ε/k is at least k. A stronger benchmark is the value of the metric
under the best omniscient mechanism that performs some arbitrary aggregation of the individuals’
data (such as a weighted sum rather than a mean) before adding noise, in a manner that respects the
privacy requirements of all individuals but does not give them all the same privacy guarantee.

4.4. Other directions
There are also a number of other questions both in the space of design for achieving better out-
comes, and otherwise. In the previous two subsections, we took the distribution F of thresholds
as given— we assumed that agents’ privacy requirements could not be modified, for instance, by
offering them additional value (beyond what they already perceive) from participating in the compu-
tation. Suppose, however, that there are some agents who could be incentivized to participate, either
with a monetary reward or some other form of benefit such as superior personalization. Can such
agents be used, especially if participation levels are shared with other agents, to set off a cascade
of participation? A natural extension of this problem is to a network setting, where agents’ data is
only used in conjunction with data from their neighborhood, such as in mobile health applications
leveraging social network data. The large literature on adoptions and cascades in network settings,
too large to properly cite here, including recent work on strategies for maximizing adoption in social
networks, is technically related to this question and could potentially be used to understand how to
seed to achieve high final participation, for instance in applications involving data sharing on social
networks.

Finally, we assume that there is no correlation between an agent’s privacy requirement and her
private data— while this is not unjustifiable in several online settings, there are also several other
settings such as computations on medical data where this assumption is unlikely to hold. Explor-

6As discussed earlier, attempting to elicit agents privacy requirements might not always be practical because a typical person
might be unable to state a quantitative privacy requirement if asked, but is likely to be able to say whether or not she is
willing to share her data in any given scenario.
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ing settings where privacy requirements are correlated with thresholds remains a fascinating but
challenging direction for further work.
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