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Abstract. An instance of the stable assignment problem consists of a
bipartite graph with arbitrary node and edge capacities, and arbitrary
preference lists (allowing both ties and incomplete lists) over the set of
neighbors. An assignment is strongly stable if there is no blocking pair
where one member of the pair strictly prefers the other member to some
partner in the current assignment, and the other weakly prefers the first
to some partner in its current assignment.

We give a strongly polynomial time algorithm to determine the existence
of a strongly stable assignment, and compute one if it exists. The central
component of our algorithm is a generalization of the notion of the critical
set in bipartite matchings to the critical subgraph in bipartite assignment;
this generalization may be of independent interest.

1 Introduction

The classical stable marriage problem studies a setting with an equal number of
men and women, each with a strict preference ranking over all members of the
other side. Since the seminal work of Gale and Shapley on stable marriage [5], a
number of variants of the stable matching problem have been studied, relaxing or
generalizing different assumptions in the original model. One particularly prac-
tical generalization is to relax the requirement of strict and complete preferences
over all alternatives: this gives rise to the stable marriage problem with ties and
incomplete lists (SMTI), where a man can have indifferences, or ties, between
women in his preference list, and need not rank all women (and similarly for
woren).

When preference lists have ties, different notions of stability can be defined
depending on what qualifies as a blocking pair: a weakly stable matching [7,9,
15] is one where there is no pair (4, j) such that both i and j strictly prefer each
other to their matched partners; a strongly stable matching [7,14] is one where
there is no pair such that one member of the pair strictly prefers the other to its
current partner in the matching, and the other member weakly prefers the first to
its current partner in the matching. Unlike weakly stable matchings, a strongly
stable matching need not always exist. Irving [7] gave a beautiful algorithm to
solve the question of deciding whether or not a strongly stable matching exists



and finding one if it does, and Manlove [14] extended the algorithm to the case
of ties and incomplete lists.

Motivated by online matching marketplaces where buyers and sellers trade
multiple items, we investigate the generalization of SMTI to assignment prob-
lems, where nodes on both sides of a bipartite graph have multiple units of
capacity c¢(i) > 1 (as opposed to unit capacity in the stable marriage model)
and edges in the graph have arbitrary capacities ¢(i, j). We study the algorith-
mic question of finding strongly stable assignments— feasible assignments where
there is no pair (i, j) such that both 7 and j weakly prefer allocating at least one
additional unit on the edge (7,j), and at least one of ¢ and j strictly prefers to
do so. The many-to-many matching problem, a special case of assignment where
at most one unit can be allocated between a pair of nodes, i.e., ¢(i,j) = 1, turns
out to be adequate to showcase most of the complexity introduced by the gen-
eralization from matching to assignment. For clarity, we therefore state all our
results in terms of the many-to-many matching problem?, and defer the gener-
alization to assignment with arbitrary edge capacities to the full version of the
paper.

The generalization from one-to-one matching, where nodes have unit ca-
pacity, to many-to-many matching with multi-unit node capacities, introduces
significant algorithmic complexity to the problem of strong stability. To explain
why, it is first necessary to understand the main idea behind the algorithms of
Irving [7] and Manlove [14] for the unit capacity case: Men propose to women in
decreasing order of preference, so that at each stage a man’s proposals are (all)
at the top of his current list and a woman’s proposals are (all) at the bottom of
her current list. The algorithm deletes pairs that can never occur in a strongly
stable matching — this happens at one of two times, the first being when a
woman receives a strictly better proposal (exactly as in the deferred acceptance
algorithm). The second is when a woman is over-demanded, that is, there are
multiple men in the engagement graph to whom this woman must be matched
to avoid a blocking pair — when this happens, no man at this level, i.e., the bot-
tom of this woman’s preference list, can be matched to her in a strongly stable
matching, since these other men will form a blocking pair. The algorithms in [7,
14] delete all such pairs which can never occur in any strongly stable matching
and then look for a strongly stable matching in a final engagement graph based
on these modified lists.

In the many-to-many matching setting, there are two major complicating
differences. The first difference is quite fundamental, and comes from the fact
that the notion of a critical set — defined as the unique maximal subset of men
with the largest deficiency, which is the difference between the size of a set and its
neighborhood in a bipartite graph — does not generalize in the obvious way to
many-to-many matching. With unit capacities, the set of over-demanded women
turns out to be precisely the neighborhood of the critical set of men. The obvious
generalization when nodes have multi-unit capacities is to define the deficiency

3 The problem of finding strongly stable many-to-many matchings has been studied
previously in [13]; see Section 1.1.



as the difference between the total capacity of a set and its neighborhood — that
is, define 6(5) = 3 ;cq (i) =2 e n(s) €(J), where N(S) is the set of neighbors of
S, and extend the definition of the critical set to be the subset of men maximizing
5(S)*. However, this obvious extension of the deficiency and the corresponding
definition for the critical set does not work, and fails in two ways — first, the
neighborhood of this set does not correctly identify the set of over-demanded
women (Example 1). Second, it does not possess the property that the size of a
maximum many-to-many matching is given by the total capacity of men minus
this maximum deficiency (Example 2).

We therefore need to appropriately extend the notion of critical set to the
multi-unit capacity setting — as it turns out, a subset of men S C A is no longer
an adequate description for the extension of a critical set. Rather, we need to
specify a critical subgraph, which is described by a partition of the set of men
and their capacities, as well as a subset of women. In Section 2, we develop
a definition of the critical subgraph that we show retains both properties of the
critical set in unit-capacity matching, and show that the critical subgraph can be
computed in polynomial time. We note that the extension of the critical set from
bipartite matching to bipartite assignment is of independent interest, and is one
of the major contributions of the paper: The critical set [12] plays a central role
in algorithms for computing stable outcomes in matching markets, both without
and with monetary transfers [7,3, 1], by providing a way to identify the set of
‘over-demanded’ women (or items); our generalization of the critical set therefore
might be useful in extending these market-clearing algorithms to marketplaces
with multi-unit node capacities.

The second difference from [7] is that with unit capacity, the edges in an en-
gagement graph are all at the same level for each node (top for men, bottom for
women), whereas this is not the case with multi-unit capacities — when ¢(i) > 1,
a man might need to propose to women of different levels in his preference list,
and a woman might need to retain proposals from different levels, to meet their
respective capacities. This means that not all edges in the engagement graph
incident to a node are equally preferred by that node. Therefore, we cannot sim-
ply seek a maximum matching or attempt to identify the set of over-demanded
women in an engagement graph as in [7], without appropriately processing it to
account for the fact that not all edges are equal. In Section 3, we present our al-
gorithm to determine the existence of a strongly stable assignment and compute
one, if it exists. All proofs can be found in the full version of the paper [2].

1.1 Related Work

There has been much work on stable matchings in bipartite graphs focusing on
different variants and applications of the original stable marriage problem. As
mentioned earlier, our work extends the algorithms of Irving [7] and Manlove [14]
for the one-to-one matching problem. Irving et al. [8] gave a strongly stable
matching algorithm for the many-to-one matching problem (i.e., nodes on one
side of the graph can have multi-unit capacities); the algorithm was improved

4 In fact, this is exactly the definition used in [13].



later by Kavitha et al. [11]. For other related algorithmic problems that arise
from the study of stable matchings, see Gusfield and Irving [6] and two recent
survey papers by Iwama and Miyazaki [10] and Roth [16]. Economic properties
for stable matchings are discussed in [17,19].

The most obvious work related to ours is [13], which studies the problem
of finding strongly stable many-to-many matchings, i.e., the special case of our
assignment model with unit edge capacities ¢(i,7) = 1. Unfortunately, however,
the algorithm proposed in [13] is incorrect, both in terms of the processing of
the engagement graph to account for the fact that the edges incident to a node
belong to multiple levels on its preference list, as well as in terms of identifying
over-demanded women (that algorithm uses the extension of the critical set based
on the difference between total capacities). We give explicit examples showing
two different points at which the algorithm in [13] fails in the full version of the

paper [2].

2 The Critical Subgraph

This section develops the notion of the critical subgraph, generalizing the critical
set from unit-capacity matching to the setting with multi-unit capacities. As
in the rest of the paper, for simplicity we restrict ourselves to many-to-many
matchings: Given a bipartite graph G = (4, B; E) with node capacities ¢(k) > 1
for k € AU B, a many-to-many matching® of G is a subset of edges such that
each node k is matched to at most c(k) pairs. Let dg(k) denote the degree of
node k in G. Assume without loss of generality that ¢(k) < dg(k), since a node
cannot be matched to more neighbors than its degree in G. Given a subset .S of
nodes, we use N¢(S) (or simply N(S)) denote the set of neighbors of S in G.

2.1 The Critical Set

Given a bipartite graph G = (A, B; FE) where all nodes have unit capacity, the
critical set is the (unique) maximal subset with the largest deficiency, where the
deficiency of S C A is defined as the difference between the size of S and the
size of its neighborhood in B, i.e., §(S) £ |S| —|N(S)|. The critical set is closely
related to maximum matchings [12,7] — the size of a maximum matching in G
is given by |A| — §(X), where X = argmaxgca {|S| — |N(S)|} is the critical set
of A, and 6(X) is its deficiency.

In many-to-many matching, nodes can have arbitrary capacities ¢(-) > 1.
We begin with two examples that show that the obvious generalization of the
deficiency of a set S C A — defining it as the difference between the to-
tal capacity of nodes in that set and the total capacity of its neighbors, i.e.,
Yies (i) = X ens) ¢i), and defining the critical set to be the (unique) subset
maximizing this quantity — fails to capture two important properties of the
corresponding definition for unit capacity matching: the neighborhood of the
critical set does not correctly identify the set of “over-demanded” women, and
the deficiency no longer relates to the size of the maximum matching.

5 Tt is also called simple b-matching and is a well-studied concept [18].



An over-demanded woman j is one for whom there is some maximum match-
ing in which j has an unmatched neighbor with leftover capacity. Specifically,
j is over-demanded if there is a maximum matching M where there is an edge
(1,7) € E such that (i,5) ¢ M and the number of matched neighbors of ¢ in
M is less than his capacity ¢(i). The first example illustrates that the neighbor-
hood of the critical set defined this way does not correctly identify the set of
over-demanded women when ¢(-) > 1.

Ezample 1. Consider graph G = (A, B; E) where A = {i1,i2,13,494} with node
capacities (2,1,1,1) and B = {41, J2, j3} with capacities (2,1, 1). Connect (i1, j1),
(i1, J2) and (iz,j1), and connect all nodes in {is,i3,i4} to all nodes in {jz,j3}.
The unique subset maximizing ;¢ ¢(i)=>_ ;e n(s) ¢(j) is A, with neighborhood
B. However, j; is never over-demanded in any maximum matching, since both
edges (i1,71) and (42, j1) belong to every maximum many-to-many matching (re-
call that at most one edge, or one unit of capacity, can be assigned between any
pair (¢,7) in a many-to-many matching).

The next example shows that in addition, the size of the maximum matching
is not related to the deficiency defined according to the difference of capacities,
i.e., it is not true that the size of a maximum matching is given by >, 4 c(i) —

maxsc A {Zies (i) = X ens) c(j)} when ¢(i), c(j) > 1.

Ezample 2. Let (Ay; B1) be a complete bipartite graph with Ay = {i1,..., 410},
B1 = {jl,...,jlo}, and C(ik) = 10 for ’ik € Al, C(jk) = 4 for jk S Bl. Let
(Ag; Bs) be another complete bipartite graph with all unit capacity nodes A =
{th,...,ih}, Ba={j1,..., 45, } (n is an arbitrary number). G = (A, B) consists
of these two graphs plus an extra node jo with capacity ¢(jo) = 11 (i.e., A =
A1 U Ay and B = B; U By U {jp}) and edges connecting all nodes in A to
Jjo- Clearly, any maximum matching of G has size n + 50 (e.g., fully match
all nodes in By to Ajp, all nodes in Ay to By, and jp to all nodes in A;). The
maximum deficiency of G is given by A; and its neighbor set By U{jo}, with value
diea, (i) = jep, c(i) —c(jo) = 100—40—11 = 49. However, >, 4 c(i) —49 =
100 + n — 49 = n + 51, which is not the size of the maximum matching.

To appropriately extend the notion of the critical set to multi-unit capacities, we
first state the following lemma for the unit capacity case, allowing an alternative
view of the critical set.

Lemma 1. Let X be the critical set of A and'Y = N(X) be its neighbor set. X
and Y define a partition of the graph G = (A, B) into two subgraphs G1 = (S, T)
and G2 = (X,Y), where S = A\ X and T = B\Y. Then any mazimum
matching My of Gy has size |S|, and any mazimum matching My of Ga has size
|Y'|. Further, My U My gives a mazimum matching of G with size |S| + Y| =
4] = (1X] = |Y]).



2.2 Critical Subgraph

We now extend the notion of critical set to the multi-unit capacity setting: when
c(i),e(§) > 1, the critical set X C A is defined not just by the identities of the
nodes in X, but also by a vector of associated reduced capacities. In addition,
we cannot simply choose the neighborhood of X to define the deficiency (and
the set of over-demanded women): we will need a different partition of the nodes
in B as well. We define the critical subgraph of a bipartite graph G below.

Definition 1 (Critical subgraph). Given a bipartite graph G = (A, B; E)
with node capacities ¢(k) > 1 for k € AUB, for anyi € A and S C B, let
ds(i) = {7 € S| (4,4) € E}| denote the degree of i restricted on S. We say
S C B is a perfect subset if there is a mazimum matching of G such that every
i € A is matched to cy(i) = min{c(i),ds(i)} pairs in S. That is, S is perfect
if this mazimum matching matches each i to the mazimum possible number of
neighbors in S. Let S* C B be the unique (Corollary 1) maximal perfect subset
(i.e., S* is not a proper subset of any other perfect set). (Note that if there is
no perfect subset, S* =).)

Define the critical capacity of A to be x = (x(i))ica where x(i) = c(i)—c,. (4).
Let X ={ie A| x2(i) >0} and Y = B\ S*. We define (X,Y) to be the critical
subgraph of G (i.e., an induced subgraph given by X and Y ), with capacity x(7)
fori € X and capacity c(j) for j € Y. The deficiency of the critical subgraph is
defined to be },c x x(i) — X ey ()

For instance, in Example 1, the maximal perfect set is S* = {j; }; the critical
capacity is x = (1,0,1, 1); and the critical subgraph is given by X = {i1,13,44}
and Y = {j2,73}. In Example 2, the maximal perfect set is S* = By U {jo};
and the critical subgraph is given by X = A; and Y = Bj, where the critical
capacity of each node in X is 9. Note that in both examples, the size of the
maximum matching (4 and 50 4+ n, respectively) is exactly the total capacity of
A (5 and 100 + n, respectively), minus the deficiency of the critical subgraph (1
and 50, respectively); this is formalized in Corollary 2.

Properties. We first state the following fundamental lemma, which says that
to prove a perfect set S, instead of showing a globally maximum matching of G
as required by the definition, it suffices to find a locally maximum matching of

S.

Lemma 2. Given a bipartite graph G = (A, B; E) and a subset of nodes S C B,
if there is a maximum matching M in the subgraph (X, cg;S), where X = {i €
A eg(2) > 0}, such that every node i € X is matched to c, (i) pairs, then there
18 a mazimum matching of G containing M. Hence, S is a perfect set.

This lemma allows us to prove that the maximal perfect set is unique, which
implies that the critical subgraph and the critical capacity are uniquely defined
as well (Corollary 1). Corollaries 2 and 3 below generalize Lemma 1 to multi-
unit capacities, showing that the critical subgraph correctly captures the set of
over-demanded vertices and the deficiency.



Corollary 1. If S1 C B and Sy C B are two perfect subsets, then S1 U Ss is a
perfect subset as well. Hence, there is a unique mazximal perfect subset.

Corollary 2. Let S C B be the maximal perfect set of graph G = (A, B; E)
and x(3) = c(i) — ¢4 (i). Consider two subgraphs G1 = (X1,cg;S) where X1 =
{i € A| c,(i) > 0}, and Go = (X2,x;Y) where Xo = {i € A | z(i) > 0} and
Y = B\ S. Then any mazimum matching My of G has size ) ;. x c4(i), and
any mazimum matching Ma of G2 has size ),y c(j). Further, My U My gives
a maximum matching of G with size equal to the total capacity of A minus the
deficiency of the critical subgraph.

o@D ey =D eli)— | D wli) =Y el)

1€Xy JEY i€EA 1€Xo JeY

The above expression is similar in appearance to (though not the same as)
the characterization of maximum size b-matchings (Theorem 21.4, [18]); however,
our focus here is to identify the set of over-demanded women.

Corollary 3. Let S C B be the mazximal perfect set and Y = B\ S. For any
j €Y, we have dg(j) > c(j). Further, there exists a maximum matching M
where there is i € Ng(j) such that (i,7) ¢ M and i is under-assigned, i.e., it has
fewer than c(i) neighbors in M. That is, Y is precisely the set of over-demanded
nodes.

Recall that in the definition of a perfect set S, we only need to find one
maximum matching in which every node ¢ € A is matched to cg (i) pairs in S.
The following claim says that if this holds for one matching, it holds for every
matching — that is, if we require the set S to satisfy this requirement in every
maximum matching, we obtain the same collection of perfect sets — so that the
two definitions are equivalent.

Lemma 3. Given a graph G = (A, B; E), let S C B be the mazimal perfect set.
Let ¢, (i) = min{c(i),ds(i)}. Then for any mazimum matching of G, each i € A
is matched to exactly c, (i) neighbors in S.

Computation. The maximal perfect set and critical subgraph can be computed
by the following algorithm.

CRITICAL-SUBGRAPH
Given G = (A, B; E), with capacities c¢(k) < dg(k) for all k€ AUB
1. Compute an arbitrary maximum many-to-many matching M in graph
G =(A,B;E)
2. For each i € A, set z(i) = c¢(i) —dn(i), where dp(i) is the degree of
t1€A in M
3. Let X={icA|z2(i)>0} and Y =0
4. While there are i9 € X and jo € B\Y such that edge (io,jo) ¢ M
—add Y — Y U {jo}
— let X « X U{i} for each edge (i,j0) € M matched to jo by M
5. Return S=B\Y and (X,Y)




Note that the algorithm can start with an arbitrary maximum many-to-many
matching, and recursively adds nodes into X and Y using essentially what are
alternating paths with respect to the matching M (all such paths can be found
in linear time using, for instance, breadth first search). Therefore, the running
time of the algorithm is equivalent to finding a maximum many-to-many match-
ing, e.g., O(m?n) by Edmonds-Karp algorithm [4] of finding a maximum flow,
where m is the number of edges and n is the number of nodes. We will show
that the output of the algorithm is independent of the choice of the maximum
matching M, and correctly computes the maximal perfect set, and therefore,
critical subgraph.

Theorem 1. The subset S = B\Y and (X,Y) returned by algorithm CRITICAL-
SUBGRAPH are the maximal perfect set and critical subgraph, respectively.

3 Algorithm for Strongly Stable Assignment

An instance of the bipartite stable many-to-many matching problem consists of
two disjoint sets A (men) and B (women), where each node has a preference
ranking over nodes in the other side. We give all definitions for man-nodes, .e.,
nodes in A; all definitions for B are symmetric. We denote the preferences of a
node i € A via a preference list £(i) over nodes in B. The preference lists can
have ties, i.e., i need not have strict preferences over all j € £(i), and can be
incomplete, i.e., L(i) need not include all j € B. (We assume that lists £(-) have
been processed so that i € L(j) if and only if j € L£(i).) We use »; and =; to
denote the preferences of i: if j =; j’, then i strictly prefers j to j'; if j =; j/,
then 7 weakly prefers j to j'. Each node 4 only wants to be assigned to nodes on
his preference list £(7); he has a capacity ¢(¢), which is the maximum number of
pairs that can be feasibly assigned to 1.

Definition 2 (Strong stability). Given a feasible many-to-many matching
M, we say (i,7) ¢ M is a blocking pair for M if one of the following conditions
holds:

— bothi and j have leftover capacity in M, and belong to each others’ preference
lists.

— 4 has leftover capacity in M and there is (i',j) € M such that i =; '; or j
has leftover capacity and there is (i,5) € M such that j =, j'.

— there are (', ), (4,5') € M such that either j >=; j',i =; " orj>=; j' i ;.

M s strongly stable if it does not admit a blocking pair.

That is, a pair (¢,) blocks M if by matching with each other, at least one
of them will be strictly better off and the other will not become worse off. In
general, a strongly stable matching need not exist, even with unit capacities (i.e.,
¢(-) = 1). We next give an algorithm for determining the existence of a strongly
stable many-to-many matching and computing one (if it exists), based on the
critical subgraph described in the previous section. For convenience, we will use
many-to-many matching and matching interchangeably throughout this section.



3.1 Algorithm

The algorithm STRONG-MATCH starts with men proposing to women at the head
of their current lists, where the head of a man’s preference list £(7) is the set of
all women tied at the top level in £(i). Each proposal from i to j translates to
adding an edge (i, j) to the bipartite engagement graph G on the sets A and B.

We say aman i € L£(j) is dominated in a woman j’s preference list if |{i’ | i’ >
i,i" € Ng(j)} > c(j), i.e., the number of j’s neighbors in G that she strictly
prefers to i exceeds her capacity. Every time a woman receives a proposal, she
breaks all engagements with men who are now dominated in her list, i.e., the
edge (7,7) is removed from the engagement graph G and i and j are deleted
from L£(j) and L(i) respectively. Men continue proposing until their degree in
the engagement graph G is greater than or equal to their capacity, or there are no
women left in their preference list. This part of the algorithm is exactly like the
algorithms for finding a strongly stable matching with unit capacity [7, 14]. Note,
however, that because of the multi-unit capacities, a node need not be indifferent
amongst its neighbors in our engagement graph G, i.e., it can have neighbors
in G from different levels in its preference list, which never happens in the
unit capacity matching version. As the algorithm proceeds, the lists £(-) shrink:
men’s neighbors get progressively worsen, and women receive progressively better
proposals.

Once all men have finished making proposals, STRONG-MATCH processes the
engagement graph G to account for the fact that edges incident to a node belong
to different levels. We define the sets Pg(i) and Zg (i) below: Pg(i) is the set
of “preferred” neighbors of i that ¢ must be matched to in a strongly stable
matching in G (if one exists), and Zg (i) is the set of “indifferent” neighbors of
¢ that ¢ may or may not be matched to in a strongly stable matching in G.

Definition 3 (P¢(i),Z¢(i) and Ep p, Ex=). Given an engagement graph G =
(A, B) produced by STRONG-MATCH, and a node i € A, divide i’s neighbors
in G into levels Ly,..., Ly according to L(i), where i is indifferent between
all nodes in the same level Ly and strictly prefers each Ly to Lyyq. Let r* =
max{r | Y p_; |Li| <c(i)}. Then Pe(i) ={j | (i,j) € G,j € Ly, k=1,...,r*},
and I (i) ={j | (i,7) € G,(i,j) ¢ Pa(i)} (and similarly for j € B). That is,

— If i has more neighbors than his capacity c(i) (i.e., dg(i) > ¢(i)), Pa(i)
consists of the neighbors in Ly,...,Ly—1 (by the rule of the algorithm, i
stops proposing when his degree in G is greater than or equal to ¢(i)). Zc (i)
consists of neighbors at level L,,.

— If i’s degree in G s less than or equal to c(i) (i.e., dg(i) < c¢(i)), all his
neighbors belong to Pg(i) (in this case, i will propose to all women in L(i)),
and Zg(i) = 0.

Let Epp={(i.j) € G| j € P(i), and i € Ps(j)}

be the set of edges such that both nodes belong to each others’ Pg(-)-groups, and
Erz={(i,j) € G | j € Pg(i), or i € Pa(j)}

be the set of edges where at least one of i or j is in the Pg(-)-group of the other.



Note that by definition, |Pg(7)| < ¢(i) and |Pa(j)| < ¢(j). Further, Pg(-) can
be empty (when |L;| > ¢(-) or the node has no neighbors in G); if this occurs,
all neighbors (if any) of the corresponding node are at the same level (by the
algorithm).

We divide all edges in G into (P, P), (P,Z1), (Z,P), and (Z,Z) types, where
an edge (i,7) is, for example, a (P,Z) type if j € Pg(i) and i € Zi(j), and
so on (note that these sets change through the course of the algorithm, as the
engagement graph changes). If a strongly stable matching is to be found using
only the edges in the current engagement graph G, it must contain all edges in
the subset E== defined above (i.e., edges where at least one endpoint strictly
prefers, i.e., needs to be matched to, the other), since otherwise such an edge
gives a blocking pair for the matching. The algorithm therefore attempts to
remove all edges in Ez=, i.e., the (P,P), (P,Z), and (Z,P) types, from G
without exceeding the cépacity of any node.

By the definition of the sets Pg(+), all (P,P) edges can be removed from G
without violating any node’s capacity (i.e., every node has adequate capacity
for all edges in Ep p since |Pg(i)| < ¢(i) and [Pg(j)] < ¢(j)). Next, we proceed
to (P,Z) edges: in Step 5(a) of the algorithm, the graph H; only contains (P,7)
edges. For every woman who does not have adequate capacity ¢, (j) = c(j) —
|Pa(j)| in Hy, for all the (P,Z) edges incident to her, we delete all pairs in
her bottom level in G (and below) in Step 5(a), since if such a pair occurs in
a strongly stable matching, it would be blocked by one of her neighbors in H;.
(The capacity of j in H; is defined this way to ensure that j can be matched
to all her Pg(j) neighbors without exhausting her capacity, i.e., pushing her
remaining capacity below 0.)

Finally, in Step 5(b), the algorithm removes all (Z,P) edges to form Hs,
since if such an edge cannot be included in a strongly stable matching in G, the
corresponding pair blocks that matching. Note that every woman’s remaining
capacity is nonnegative after the removal of all these edges in Ez= (Step 5.(a)
of the algorithm has already dealt with all nodes 7 who do not have enough
leftover capacity for (P,Z) edges). However, a man’s capacity might be smaller
than the number of edges removed before forming Hs (in this case, no strongly
stable matching exists).

The graph Hs contains only (Z,7) edges, so that finally all edges belong to
the same level for each node. However, note that the remaining capacity of nodes
in Hs can be greater than one — thus our problem of identifying over-demanded
women is still different from [7, 14], where all nodes have unit capacity in addition
to having all neighbors at the same level in their preference list. Note that if all
men cannot be fully matched in Hs, there is a blocking pair in every maximum
matching in Hs: any under-assigned man will form a blocking pair with some
neighbor in Hy to whom he is not matched. To continue, we therefore need to
identify every woman j who is over-demanded in Hs, and delete all pairs from the
bottom level of each such over-demanded woman. By Corollary 3, the set of these
over-demanded women is given precisely by the critical subgraph. We therefore



use the algorithm CRITICAL-SUBGRAPH to identify the critical subgraph in Hs
and delete all such pairs in Step 5(b).

STRONG-MATCH

1. Set each woman j € B to be unmarked
. Initialize the engagement graph G = (4, B; E) where E(G) =10
3. While there is ¢ € A such that dg(i) < ¢(i) and ¢ has a non-empty list
— for each j € B at the head of the list L(i)
e remove j from L(i) and add (i,5) to E(G)
e if j is fully-engaged (i.e., da(j) > c(j)), set j to be marked
* for each dominated man i’ on j’s list, delete pair i’ < j
4. Set b(i) =cq(i), b(j) =ca(j) for i€ A,j € B
5. (a) Comstruct graph H; from G by removing all edges in Epp and Zg(7)
for each i€ A. If Hi #0
— set the capacity of each j € B in Hi to be ¢, (j) = c(j)—[Pc(j)l
— if there is j € B such that du,(j) > ¢y, (4)
e for each such j € B with du,(j) > ¢y, (4)
* set j to be marked and let i € Np,(j) be a neighbor of j
in Hl
* for each man i with i >=; i, delete pair i <> j
e goto Step 3
(b) Construct graph H> from G by removing all edges in Ezz; reducing
b(i) and b(j) by 1 each for every removed edge (i,j) (remove all
nodes with non-positive b(i) and their incident edges from Hs)
— set each node’s capacity in Hz to be ¢, (i) = b(i) and c,, (j) =
b(j)
— find the critical subgraph X C A and Y C B of H»
—if Y #0
e for each woman j €Y
* set j to be marked and let i € Np,(j) be a neighbor of j
in H2
*x for each man i with ¢ >=;i', delete pair i <> j
e goto Step 3
6. Reset b(i) = ca(i),b(j) = ce(j) for i€ A,j € B
(a) Construct graph G’ from G by removing all edges in Ez=z; set
b(i) « b(i) — 1 and b(j) « b(j) — 1 for each removed edge (i,7) € Er=;
let the capacity of each node in G’ be b(-)
(d) If b(i) >0 for all 1€ A
— let M’ be any maximum matching in G’, and let M = M/UEﬁ
— for each j € B, if the following conditions hold
e if j is marked, it is matched to c¢(j) pairs in M
e if j is unmarked, it is matched to c¢(j) pairs in M
then return M as a strongly stable matching
(c) Else no strongly stable matching exists for the given instance




Theorem 2. Algorithm STRONG-MATCH determines the existence of a strongly
stable assignment and computes one (if it does) in strongly polynomial time®

O(m3n).
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