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Abstract

We consider the problem of information dissemina-
tion in wireless ad-hoc networks. Capacity constraints
and the varying needs of applications lead to the need
for delivering data at varying resolutions as a func-
tion of distance. We introduce a primitive, which we
call visibility, to quantify the variable-resolution re-
quirement. We design and analyze new variable res-
olution multicast algorithms based on simple probabilis-
tic schemes to achieve a required visibility. We also
examine how multi-path effects influence visibility and
propagation algorithms. Finally, we consider the prob-
lem of designing the visibility function to maximize an
overall utility function (specified by applications) over
the network. We derive a condition relating optimal
utility and visibility, which can be used to derive the
optimal visibility for a class of utility functions.

1 Introduction

There are three basic information dissemination
paradigms from the perspective of information flow pat-
terns: one-to-one, one-to-many, and many-to-one. In
this paper we introduce variable-resolution information
dissemination (VRID) as a new one-to-many informa-
tion dissemination paradigm. VRID allows users not
only to express and specify the global constraints (such
as the multicast IP address the group is subscribed to
in IP multicast, or the set of geographical locations the
recipients are in, as in geocast[7], or the set of spatial-
temporal locale the recipients are supposed to be in as
in mobicast[6]) for the potential recipient set, but also
to specify the relative delivery probabilities among the
set of potential recipients. In other words, VRID mul-
ticast no longer implicitly treats all potential recipients
in the same way as conventional multicast paradigms
do. VRID gives the users an additional dimension of
control in multicast information dissemination, and is
useful in developing a set of emerging applications on
wireless ad hoc networks. With VRID one would be

able to, for instance, deliver information with higher
resolution (in space and time) to nodes closer-by and
with lower resolution to nodes further away, with one
call to the VRID service. In a sense, IP multicast, geo-
cast, and mobicast are special cases of VRID with an
expected delivery probability of 1 for the set of expected
recipients.

The motivation of the generalized concept of
variable-resolution information dissemination is based
on the following observations on many ad-hoc network
applications.

• Information has well-defined spatial value in many
real-world applications. For instance, in a vehicle-
to-vehicle collision warning application, the loca-
tion and velocity information of a specific vehicle
is useful for its neighboring vehicles, is less useful
to vehicles further away, and is of no value to ve-
hicles on the other side of the globe. Furthermore,
neighboring vehicles may demand high accuracy
from each other’s the location and velocity data,
and may be able to tolerate less accurate data from
vehicles further away in the neighborhood.

• Information granularity requirements differ from
application to application. For instance, an exit-
aware lane-switching advisory system might re-
quire location and velocity of all vehicles within
500 meters, while a peer-to-peer cooperative traf-
fic monitoring system might only need location
and velocity information from a vehicle at ev-
ery half kilometers interval at very low frequency.
When there are multiple applications running on
the same vehicle requiring the same type of in-
formation but with different granularity require-
ments, the resource usage can be further optimized
by marshaling the demands and providing a proto-
col to serve the needs of all the applications rather
than asking each application to run their informa-
tion dissemination and data-collection protocols
independently.
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• A service allowing utility-level control for informa-
tion dissemination will greatly simplify the pro-
gramming task for many ad-hoc network applica-
tions. We will show that variable-resolution speci-
fication may be derived from an information utility
function. Lower-level information dissemination in
turn can be optimized for a given utility.

The contributions of this paper include: (1) the in-
troduction and analysis of the visibility concept and
the variable-resolution information dissemination idea;
(2) analysis relating global visibility requirements with
local packet forwarding strategies; (3) simple proto-
cols achieving target visibility and a study of the ef-
fect of multi-path; (4) a study of the impact of con-
ventional wireless ad hoc network broadcast/multicast
heuristics on achieving target visibility; (5) linking in-
formation visibility requirements with higher-level in-
formation utility considerations, and examining how
a utility model impacts the visibility specification for
variable-resolution information dissemination.

The paper is organized as follows. Section 2 in-
troduces a visibility primitive for VRID, and discusses
some of the issues in defining such a primitive. Sections
3 and 4 present several algorithms for efficiently imple-
menting the visibility primitive of section 2. Section 5
studies how higher-level applications can use a system
based on the visibility primitive to support their infor-
mation propagation needs. This involves developing a
mathematical connection between an application’s util-
ity for information and the visibility primitive.

1.1 Related Work

Efficient information dissemination is of interest to
many networked application domains spanning from
distributed information systems[10], sensor networks[5,
14, 8, 4] and vehicular networks[12, 3, 16, 11]. Wire-
less ad hoc networks are often the technology substrate
for applications in these areas. Past research in these
areas has generated many novel protocols, insights and
heuristics for cost-effective information dissemination
in wireless ad hoc network. For instance, the issue of
proximity based data dissemination is discussed in [10],
where the architecture allows subscription to informa-
tion based on proximity; different applications can sub-
scribe to information within different ranges. In [11],
the idea of layered data dissemination is discussed, once
again motivated by a proximity-based need for infor-
mation in different applications. The idea in [11] is to
transmit packets with layers of data which are succes-
sively peeled off as information travels further. [16] dis-
cusses a broadcast protocol for dissemination of travel
and traffic information with adaptive inter-broadcast

times, reducing collisions and decreasing average er-
ror of information. [5] proposes to use meta-data ne-
gotiations to eliminate the transmission of redundant
data throughout the network. [8] proposed a struc-
tured routing-searching paths for cost-effective infor-
mation dissemination and discovery. Utility has been
applied to selectively collecting sensor data in energy-
constrained networks in [2].

However, as mentioned earlier, most of the previous
work have been done under a conventional notion of
uniform and deterministic delivery, i.e., a node is either
a group member of a specific information delivery ses-
sion, or not a member. Very little work has been done in
the direction of non-uniform and variable information
delivery. An earlier notion of non-uniform information
delivery was proposed in [15]. Our work extends this
work by introducing a novel notion of information visi-
bility and linking it with a general definition of variable
resolution information dissemination. We also present
more rigorous mathematical analysis connecting visibil-
ity, propagation protocols, and multi-path effects, and
examine the relationship between visibility and utility.

2 The visibility function

In this paper, we focus on the scenario of disseminat-
ing information to multiple recipients throughout the
network. This differs from typical point-to-point com-
munication in the sense that the goal is not to tranport
information to any specific node, but rather to spread
information so that all nodes can be aware to some ex-
tent about what is happening in the network.

In many applications, the requirement on informa-
tion resolution varies with distance, with short-range
nodes requiring more accurate information. This is
due to the fact that closer range information is more
relevant to immediate decisions. For example, a col-
lision avoidance application would require that alarm
information (accidents or sudden braking) propagates
to a relatively small distance with a strong guaran-
tee. Further out, this alarm information is less im-
portant, since vehicles at longer distance have plenty
of time to respond. Similarly, a driver may often
want information such as road conditions, weather up-
dates, and the traffic situation in a local region around
the vehicle. In such applications, a variable-resolution
representation of the world, with resolution decaying
with distance, is sufficient. Compared to broadcast-
ing, variable-resolution information dissemination also
significantly reduces consumption of communication
bandwidth, which is a scarce resource in ad hoc wireless
networks.

To achieve variable-resolution information dissemi-
nation, we first introduce the concept of a visibility
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function. It specifies to what extent the information
originating from a point is ‘visible’ at a given distance
from that point. For example, imagine a network along
a 1-D line x ∈ R. The visibility function v(x) takes
value in the interval [0, 1], and specifies the ‘percent-
age’ of information from the source (assumed to be at
x = 0) that reaches location x. The visibility can be
similarly defined for higher dimensions. For clarity of
exposition we will assume in this paper that v is a spher-
ically symmetric function; the techniques described can
be readily extended to asymmetric dissemination.

Now we discuss what we mean by ‘percentage of in-
formation’. It is often hard to quantify information
content, and even harder to define percentage, since
both are related to application semantics. Depending
on application requirements, information can be inter-
preted in various ways. One interpretation could be in
the compression sense, i.e., the entropy of the source
is H(0), but only H(x) = H(0)v(x) bits are used to
encode the information to be sent to x. Another in-
terpretation is the reconstruction accuracy sense: sup-
pose ε(0) is the error in reconstruction when all pack-
ets reach the destination, measured by some metric,
and ε(x) is the reconstruction error at location x, then
v(x) = ε(0)/ε(x). However these definitions depend on
specific compression or reconstruction schemes.

Here, we will not discuss definitions of visibility that
are application dependent, but rather deal with a more
general definition, (which we will be able to use to an-
alyze the application-specific visibility for different ap-
plications). In this paper, we only focus on the issue of
how to spread information. To disentangle ourselves
from application-specific algorithms, we use a much
simpler definition, which inherently assumes that all
packets are equally important to applications1:

The visibility function v(x) is defined as the
percentage of packets that reach a destination
at distance x.

3 Algorithms for visibility

In this section we discuss algorithms for achieving a
specified visibility function using probabilistic dropping
schemes. In most of this paper, the applications con-
sidered require us to mostly use push style algorithms;
thus we focus on the algorithms for push propagation
(the algorithms for pull are similar).

In push propagation, there is one source node, and
all other nodes are destination nodes; the source dis-
seminates information to all other nodes in the network

1In compression applications, this is the same as assuming
all packets are equal in reducing uncertainty; in estimation ap-
plications, this assumes a straight-forward down-sampling based
estimation approach, as opposed to data filtering approaches.

without any explicit requesting of information. There
are two ways to probabilistically achieve a given visi-
bility function with push.

1. A1- Adjusting forwarding probabilities:
Given a visibility v(x), messages sent out from
the source are probabilistically dropped by nodes
en route to achieve the visibility function. Note
that since we use probabilistic dropping en-route,
we can necessarily only deal with visibilities v(x)
that are decreasing2. The question in this case is
to quantify how, i.e., according to what probabil-
ity distribution, are the nodes to drop the mes-
sages from the source. (For example, in the one-
dimensional case, if all nodes on the route were to
forward a message with a constant probability p,
the only achievable visibilities would be exponen-
tial functions v(x) = px, and not any arbitrary de-
creasing function: in general, we need to be able to
find the forwarding probabilities p(x) that imple-
ment any given visibility v(x)). In what follows, we
are considering a one-dimensional situation, with
the source at x = 0 3.

First consider the simplest case, where v is a de-
creasing staircase function, i.e., v(x) = vi, xi ∈
[li, li+1). (Note that making sup(li−li+1) arbitrar-
ily small allows us to approximate any decreasing
function v.) In this case, the forwarding proba-
bility from node i to j is 1 if xi, xj ∈ [lk, lk+1]
for some k, and is vk+1/vk if xi ∈ [lk, lk+1] and
xj ∈ [lk+1, lk+2]. The overall distribution is then
exactly the same as though the source tossed a
coin with bias vi to decide whether or not to send
a message to nodes in region i and then directly
communicated the message to these nodes 4.

Now consider a smooth decreasing function v. Sup-
pose nodes were placed unit distance apart on the
x-axis, that is, node i is placed at i, and each node
forwards messages with probability pi. Then the
visibility function

v(n) =
n−1∏

i

pi. (1)

2This is not a very limiting requirement: Most of the real
visibilities we will be interested in will have this feature; or at
worst will peak close to the source and then decay from that
peak on. In the latter case, we just approximate this visibility by
the closest decreasing function, i.e., with ṽ(x) = vmax until the
peak, and ṽ(x) = v(x) there onwards.

3The one-dimensional case is not a bad approximation to the
situation on a single roadway; a similar idea can be used in higher
dimensions, although the effect of multipath needs to be consid-
ered, we discuss this later.

4From the practical point of view, it is easier to know the
location of the sender of a received message than the receipient
of a sent message; we discuss this briefly later.
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For completeness, we want to derive a formula for
a continuum of nodes on the x axis (the results for
a discrete placement of nodes should be a special
case of this formula). We define the continuous
analog of the pi, p(x), by

log v(x) =
∫ x

0

log(p(x))dx (2)

⇒ p(x) = exp((log v(x))′) (3)

since log v is differentiable given the assumptions
on v. Observe that if p(x) is constant over [i, i+1),
then (2) reduces to (1).

Now suppose we have a placement of nodes i at lo-
cations xi on the x-axis, with the source at the ori-
gin. (If we assume the point-to-point abstraction
for communication, we have no multi-path effects:
thus in the one-dimensional situation, a message
from a node is heard by (and only by) the neighbor
adjacent to it on its left.) To achieve the visibility
v(x), a node i at distance xi from the origin, with
the recipient of its message located at xj > xi, flips
a coin with bias

v(xj)/v(xi) = exp(
∫ xj

xi

log(p(x))dx). (4)

Most of the time, in real applications, this knowl-
edge might be hard to obtain: it is easier to know,
in addition to one’s coordinates, the coordinates of
the node xi from which one received the message.
Let the coordinate of the receiver be xj . Node j
can toss a coin with probability v(xj)/v(xi), to ob-
tain an upper bound on the visibility function with
an error factor of p, where p is the visibility at the
node closest to the origin. (That is, if the actual
visibility should be v(x) at some x, this scheme
will cause it to be v(x)/p.)

This algorithm does not generalize quite as well to
two dimensions. The effect of multipath in one-
dimension can be modelled under somewhat re-
strictive assumptions, and a correction factor in-
troduced; this is discussed in detail in the follow-
ing subsection. However, in two-dimensions, the
effect of multi-path is not quite as easy to analyze,
since there are a large number of paths by which a
message from a source can reach any given node.

The algorithm we discuss next has significant ad-
vantages over A1 in that it generalizes readily to
multiple dimensions, and also lends itself more eas-
ily to policing node behaviour.

2. A2- Choosing distance to propagate:

Here, the visibility function v(x) is achieved as fol-
lows: each time, the source selects a distance xc

uptil which the update will travel (the message is
dropped with probability 1 by the first node with
‖x‖ > xc, where ‖x‖ is the distance of the node
from the origin). The problem then is to deter-
mine the distribution pd(x) according to which this
distance must be picked, in order to achieve the
visibility v(x). If a node at distance x receives a
message, all nodes with distance less equal x re-
ceive it too; thus we can only achieve decreasing
visibility functions v.

Since all nodes at a distance less or equal to xc

receive the message when xc is chosen (with prob-
ability pd(xc)), the probability that a node at dis-
tance x gets the message is

∫ ∞
x

pd(x)dx. Therefore,
we must have

1 − v(x) =
∫ x

0

pd(x)dx. (5)

Suppose v is decreasing and differentiable, then
setting pd(x) = −v′(x) satisfies the above. There-
fore, we can choose the distance up to which to
send according to the distribution pd(x) = −v′(x).
If v is a staircase function, the solution is easy
again: choose di, the distance at end of interval i,
with probability vi − vi+1.

This algorithm scales obviously to n-dimensions,
and is not affected by multipath in terms of the
delivered visibility. Each node simply ignores mul-
tiple copies of the same message obtained via mul-
tipath. If the message is to travel to a distance
x and completely die beyond x, this still happens
despite multipath, with not much forwarding over-
head, since repeated messages are not forwarded.

3.1 Effect of multipath

Here we briefly discuss the effect of multipath on the
algorithms for implementing visibility in the push case,
and make a case for using algorithm A2 for implement-
ing push. In 1-D, for A1, we are able to approximately
correct for multipath with some assumptions on the na-
ture of the propagation. In 2-D, an analysis of the effect
of multipath is extremely hard, and thus corrections
need to be empirical. On the other hand, algorithm
A2 is unaffected by multipath in terms of delivering a
given visibility.

Consider the following situation in one-dimension:
each node forwards a message with the same probability
p, i.e., v(x) = px, with message propagation outward
from the source (located at the origin). We make the
simplifying assumption that every node’s transmission
is heard by its m immediate neighbours to its right;
the number on the left does not matter. This assump-
tion corresponds to placing the nodes on Z+, with the
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source at 0, and assuming a communication radius of
m.

First we consider the protocol where each of the m
recipients of the message forwards the message with
probability p, independent of the actions of the other
m nodes. The fact that there needs to be a mechanism
ensuring non-simultaneous transmission to avoid losses
due to collision is abstracted away. Let the probability
that node j (i.e., the node located at j) receives the
message from the source be denoted by pj . We can
write a recursion for pj in the presence of multipath m
(the pj are the attained visibilities):

1 − pj =
m∏

i=1

(1 − pj−ip). (6)

Figure 1 shows the actual visibility attained in the
presence of multipath, compared to the desired visibil-
ity. It is clear that even with a small multipath of 4, the
visibility achieved is much higher than required, leading
to a large amount of wasted communication bandwidth.
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Figure 1. Achieved and desired visibility in the presence
of multipath.

As it stands, the recursion (6) is a mth order, non-
linear recursion; we can show that an approximation
can be made to (6) bringing it to a m-th order, linear
recursion, as

pj = p(
m∑

i=1

pj−i). (7)

Suppose there is a solution of the form pj = xj , then it
must satisfy xj = p(

∑m
i=1 xj−i), i.e.

xm = p(xm−1 + . . . + 1). (8)

To achieve f(n) = pn
0 in the presence of k-multipath, we

want the forwarding probability to be such that x = p0,
i.e.,

pf =
pm
0

pm−1
0 + . . . + 1

. (9)

If each node forwards the message with probability pf

instead of p0, then the actual visibility achieved is ap-
proximately pn

0 . Simulations indicate that this solu-
tion to the approximate recursion is indeed a good ap-
proximation to the actual solution of the recursion (6),
solved with p0 replaced by pf from (9). Figure 2 shows
one such plot. In this one-dimensional case, we are also
able to analyze the more realistic protocol where the
transmission from a node suppresses that from other
nodes within range of that transmission, and correct
for the effect of multipath.
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Achieved f(x) after correcting for multipath

k = 2
k = 1
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k = 4

Figure 2. Achieved visibility after correcting for the pres-
ence of multipath.

However, none of these analyses extend to 2-
dimensions, and it is hard to derive a correction factor
that does not overestimate too much the required visi-
bility nor underestimate it anywhere. Thus, in a situa-
tion with multipath, it is advantageous to use algorithm
A2 (which is unaffected by multipath) for achieving a
given visibility function.

4 Integrating Visibility with Propaga-
tion Algorithms

The previous section we compared predetermined
dropping (A2) with in-transit dropping of information
(A1), and concluded that predetermined dropping was
particularly simple to implement and had many desir-
able properties. In this section we consider the details
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Figure 3. Failure rate for a gossip algorithm at various
densities.

of implementing A2. In particular, we find that a prede-
termined approach, that can accommodate some acci-
dental dropping of information in-transit, has excellent
traffic characteristics.

The broadcast storm problem (Ni et al [13]), can
occur when algorithms flood information in an ad-hoc
network: congestion causes nodes to delay propagating
an update, and they eventually transmit updates long
after they are useful to their neighboring nodes. The
broadcast storm problem has been studied and numer-
ous solutions have been proposed. In this paper we
will use the elegant gossip-style algorithms of [13] to
illustrate the issues of implementing visibility. In these
algorithms nodes receiving new updates do not always
retransmit the update, but rather listen to neighboring
broadcasts; if the update is overheard a predetermined
number of times (the “gossip count”) then the update
is not propagated. Figure 3 shows simulation results
of gossip-style algorithms on an linear example typical
of vehicle roadways. For these simulations the nodes
were distributed uniformly in a 1 unit by 50 unit lin-
ear strip, according to various densities shown on the
x-axis. A time-step simulation was used, nodes were
able to transmit 1 unit distance, and (to model carrier-
sense conflict avoidance) a random covering was chosen
so that transmitting nodes could not hear other trans-
missions (although hidden terminal conflicts could oc-
cur). Each line shows a different gossip count, and the
broadcast storm (an infinite gossip count) is shown as
a dashed line.

The simple and robust gossip-style algorithm is an
attractive choice for propagating information with a
visibility function. It’s not the only choice, and we will
see later that some improvements are possible, however,
we will use the gossip-style algorithm to illustrate the
integration of visibility with propagation algorithms.
Other propagation algorithms can be similarly modi-
fied.

At a density of 10, Figure 3 shows a gossip algorithm
(gc = 2) with a loss of 50.5% over the length of 50 units.
Assuming a constant p(x) in (3) gives p(x) = 0.986
and a uniformly decaying visibility: vf (x) = e−0.01406x.
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Figure 4. A linear visibility function adjusted in advance
for in-transit failure
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Figure 5. Actual visibility observed after precorrection.

This visibility is the result of accidental loss; to obtain
a desired target visibility, for example, to obtain a lin-
early decaying vt(x) = 1 − x/50, we can use a “pre-
corrected” vc(x) = vt(x)/vf (x). An example is shown
in figure 4, for the linear target, and simulation results
are shown in figure 5. This is a very efficient way to
achieve linear visibility: the gossip algorithm at den-
sity 10, gc = 2 has only 36% of the nodes transmitting
the update. But this technique has limitations. First,
at low gossip counts and high in-transit loss rates, not
all target visibilities can be realized efficiently, since
the pre-corrected visibility must still be less than 1. In
fact, it is keeping the pre-corrected visibility less than
1 that sets the limit on possible communication sav-
ings with this pre-correction technique. Second, at low
gossip counts the failure rate is sensitive to density, so
the correction may be inaccurate. Figure 6, shows the
results of the same approach as figure 5, but with den-
sity varying sinusoidally between 7 and 13 rather than
being fixed at 10.

For the linear strip simulation model we are using
here, the most significant contribution to propagation
failure is a gap-jump failure. This occurs when there is
a gap between neighbors that is larger than the commu-
nication range—none of the nodes across the gap will
receive the update. With the gossip algorithm, a gap
jump-failure is more likely because all nodes that have
received an update on one side of the gap, will not nec-
essarily transmit the update, in particular, the nearest
nodes to the gap may not transmit the update when
they have already heard other nearby nodes transmit-
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Figure 6. Consequences of variation in density.

ting the update. Consider a single gap jump problem:
k points are drawn uniformly in the interval [−1, 0] and
a gap Z is drawn in the interval [0,∞] according to an
exponential distribution λe−λz. If Xr, the rightmost
point from [−1, 0],is within communication range of Z,
that is Z −Xr ≤ 1 then we say that the gap is jumped.
This problem can be analyzed to show a probability of
gap-jump failure of:

λ−kk(Gamma[k] − Gamma[k, λ]). (10)

For a single gap, equation (10) relates gap-jump failure
to density λ and gossip count k − 1. The failures of
figure 3 are more complex than this simple gap jump
problem, resulting from propagation along an entire lin-
ear strip that is slightly more than 1-dimensional, with
multiple potential gap-jump failures and non-uniform
distribution of points with updates. However, because
we will eventually pre-correct the visibility function to
compensate for actual in-transit loss, as we did in fig-
ure 4, we only need a model that captures the salient
features of the problem—in this case a model that re-
lates density and gossip count to failure rate.

In particular, to deal with the variable density prob-
lem we can have nodes sample their local density and
then adjust their gossip count to obtain a more stable
failure rate. Figure 7 shows the results of using the fol-
lowing formula to set the gossip count gc depending on
the local density d:

gc(d) = 0.92e(10.17/d), (11)

and applying it to the variable density problem of fig-
ure 6. The visibility function was pre-correcting as in
figure 4, for an observed per-unit forwarding probability
of 0.986. The density d is computed from the number
of nodes within immediate communication range (while
density estimation could be extended several hops, one
hop is simple to compute and works reasonably well).
The fractional portion of gc(d) is interpreted proba-
bilistically, so that a node will always use an integer
gossip count of either the floor or ceiling of gc(d). The
constants in equation 11 were obtained by fitting the
form of equation (11) to the gap-jump failure model to
equalize the failure rate across density.
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Figure 7. Results of varying gc to compensate for varia-
tions in density.

While gc can be varied to make the system more
robust against variations in density, perhaps equally
important, it also can be varied to reduce traffic. Since
traffic is roughly linearly dependent on gossip count,
we would like gc to be “well spent,” that is, gc should
be high for updates that still have large distances to
propagate, where the potential loss from dropping these
updates would be greater. More precisely, gc can be ad-
justed dynamically based on the remaining distance an
update has to propagate, to equalize the marginal re-
duction in failure rate per gc. We performed a sim-
ulation experiment on the constant density example
(d = 10) above, using the following formula for gc based
on r (the remaining distance to propagate):

gc(r) = 0.235 − 0.704 log(1/r) (12)

We found that the dynamically adjusted gc reduced
traffic by 15%, while slightly improving the in-transit
loss. As before, we could pre-correct the visibility func-
tion to remove the effects of in-transit loss. The con-
stants in equation (12) were obtained by fitting the
form of equation (12) to a simplified variant of gap-
jump failure model, to achieve constant marginal ben-
efit for gossip count.

5 Visibility and utility

So far we have discussed the visibility primitive, and
algorithms and implementations given a visibility func-
tion. In this we consider the question of where a visi-
bility function comes from. Clearly, the visibility will
depend on the application it is being used for: it is
clear that the shape of the visibility curve is very dif-
ferent, for example, for an emergency alert application
and a route planning application. Here, we quantify
this relationship by modelling the information need of
an application in terms of a utility function.

With an application, we associate a utility function
U , where U = U(r, v) is a function of distance from
source r, as well as the visibility v at which informa-
tion is received. The dependence on r reflects the fact
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that the value of information received is a function of
distance from the source of the message; the depen-
dence on v reflects the fact that the visibility affects
the quality of reconstruction, and therefore the value
of the reconstructed information.

In what follows, we will discuss how to design the
visibility function v(r) to maximize the overall utility
over the network, where the overall utility is the integral
over the entire network of the utility at each distance
r.

5.1 Capacity constraints

With no constraint on the visibility function, the
overall utility would be maximized by having a constant
visibility of 1, i.e., v(r) = 1 for all r. This is because
for any r, the maximum utility is for v = 1: one cannot
do a worse reconstruction with more information than
with less. Therefore, to make a meaningful problem,
we must first outline the constraints on v, which arise
from capacity limits in the network.

Suppose we have a circularly symmetric visibility
function in two dimensions v(r, θ) = v(r). Suppose
that the nodes are distributed with some density D(r),
which again for simplicity we assume to be radially
symmetric. Assume that all nodes are generating up-
dates at the rate of 1 update a second. Then, the total
number of messages reaching the origin per second is∫

v(r)D(r) · 2πrdr. This number must be less than the
capacity at the origin; therefore,

∫
v(r)D(r) · 2πrdr ≤ C. (13)

For example, if density is constant, and v(r) �= 0 for
r < ∞, then this indicates that v(r) must be o(1/r2)
in order to be able to satisfy the capacity constraint5.

For simplicity, we will henceforth assume we are
dealing with a constant density D and radially sym-
metric functions U and v. So, we can now state the
utility maximization problem as follows:

maximize
∫

r
U(r, v)2πrdr

subject to 2πD
∫

r
v(r)rdr ≤ C,

0 ≤ v(r) ≤ 1,
v̇(r) ≤ 0.

(14)

The last two constraints come from the fact that the
visibility is a decreasing function of distance taking val-
ues between 0 and 1.

Consider a relaxation of (14), obtained by removing
the last two constraints; if the solution of the relaxation

5Note that the presence of multiple sources is what gives rise
to a capacity constraint of this form: if only one source were
transmitting, we would only have the constraint that the rate at
which it generates updates is less than the capacity C.

satisfies these constraints, then we have found the solu-
tion to the original problem. For this relaxed problem,
we can derive a very simple necessary condition for a
visibility v(r) to be optimal for (14).

A necessary condition for v(r) to be optimal for the
relaxed problem is that the Lagrangian have a station-
ary point at v ([9]). Thus, we are looking for a station-
ary point of

∫
r

U(v, r)2πr + λv(r)2πrdr.

Using the Euler-Lagrange equations, we require that

∂U(r, v)
∂v

2πr + λ2πr = 0. (15)

Therefore, we must have

∂U(r, v)
∂v

= −λ, (16)

that is, ∂U(r,v)
∂v is constant through the network.

An intuitive explanation for this equation is as fol-
lows: for an optimal v(r) that maximizes overall utility,
it should not be possible to move a small amount of vis-
ibility from some location r1 to some other location r2

that results in a change in overall utility, i.e., ∂U(r,v)
∂v

must be the same throughout the network.
Note that (16) is a only a necessary condition for

the relaxed problem. However, under certain circum-
stances, we can use this to extract the optimal visibility
function v(r).

Suppose that U(r, v) is separable in r and v as
f(r)g(v). That is, the effect of visibility on quality
of reconstruction is modeled in g(v), and the effect of
a decrease in value of the reconstructed information is
modelled in f(r). In this case, (16) can be written as

f(r)
∂g

∂v
= k. (17)

Let G(v) = ∂g
∂v . If G is an invertible function, then we

can derive the optimal visibility from this condition as

v(r) = G−1(
k

f(r)
), (18)

where the necessary condition is now sufficient to give
us an optimal v(r), since there is only one solution to
the above equation. If further this v is a decreasing
function lying between 0 and 1, then we have actually
solved the original optimization problem (14).

Furthermore, finding the visibility function satisfy-
ing (14) can be simplified when g(v) is a concave func-
tion of v. The concave assumption is very plausible, and
commonly encountered in practice: it is equivalent to
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diminishing returns, which is satisfied by many practi-
cal utilities. One can easily show that for concave g(v),
the visibility function (18) is decreasing in r. There-
fore, the last constraint in (14) (i.e., the monotonicity
constraint) is automatically satisfied. To satisfy the re-
maining constraint that 0 ≤ v ≤ 1, one can adjust the
free parameter k to find a feasible solution.

If the utility U(v, r) is concave in v, even if it is
non-separable, the problem (14) can also be solved nu-
merically. Divide the range r into intervals of length
∆r, and assign a (discrete) variable vi for the ith in-
terval6. The value of U(v, r) in the ith interval can
be approximated by the value at the midpoint ri. The
problem then becomes

maximize
∑N

i=1 ciU(vi, ri)
subject to

∑N
i=1 divi ≤ C,

0 ≤ vi ≤ 1, i = 1, . . . , N
vi+1 − vi ≤ 0, i = 1, . . . , N − 1,

(19)

where N is the total number of intervals, and ci =
2πri∆r, di = ri∆r are constants. Since U is concave,
the objective function is a sum of concave functions,
and is therefore concave in the vi. The constraints are
linear in vi, and therefore we have a concave maximiza-
tion problem, which can be solved efficiently [1].

Thus, we can now move from the requirements of an
application to a visibility function, by constructing a
utility function that reflects the need of the application
as a function of distance, and by analyzing how fidelity
in the application changes with visibility.

Example: As an example, we study the problem
of detecting rare events as an instance of deriving a
visibility function from utilities. Suppose we want to
detect the occurence of a rare event. For example, we
might be interested in using the differential slip of a
vehicle as an indicator of icy road conditions. If there
is a large number of high reported slips, it is more likely
than not that the road is icy, but a few reports are a
weaker indication. The number of reports scales with
visibility, and thus visibility must be accounted for in
the decision problem.

In the appendix, we model the rare event problem,
and express the g(v) portion of the utility as a function
of visibility, which is used to derive a visibility for utility
maximization. The results for a sample instance are
shown in Figure 8. Using the dependence g(v) of the
utility on the visibility, we can now numerically obtain
a visibility function that maximizes the utility for the
network once we know f(r), the decay of the value of
information with distance. For f(r) = 1/r3, and g(v)
as in Figure 8, the obtained visibility is shown in Figure
9.

6For practical problems, the range r is bounded as well, albeit
by some large value.
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Figure 9. Optimal visibility for rare event detection

with f(r) = 1
r3 .

6 Discussion

We have developed the concept of visibility to inter-
face between higher-level applications and lower-level
information propagation algorithms. As an interface
concept, it has many desirable properties: it is simple
to describe, and because of its simplicity it is possible
to mathematically link it to relevant quantities on ei-
ther side of the interface, i.e., we can analytically relate
visibility to quantities such as utility and information
loss.

In this paper we have not discussed filtering. Since
visibility is a form of downsampling, filtering before
downsampling could be useful to avoid aliasing arti-
facts when a signal is reconstructed. Here we have as-
sumed that the data does not contain high frequency
artifacts, an assumption that is reasonable for many
vehicle applications. However, we are continuing to re-
search combining filtering with visibility.

As an illustration of the potential value of filtering,
and its interaction with utility, we note that the rare
events example of the previous section can be modified
as follows: in addition to propagating individual rare
events, sensors can average rare events that they have
received from neighboring nodes. Because these aggre-
gated events are averages they will have lower variance
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and higher utility in the decision problem. They can
also be propagated with a visibility function, derived
as above, with much higher dropping and consequently
lower traffic rates. However, this aggregation intro-
duces additional delay, and creates some additional is-
sues in reconstruction. It is likely that a combination
of direct propagation of rare events to nearby nodes,
and delayed propagation of aggregated events to dis-
tant nodes is the best approach to this application. In
both instances, however, the visibility function is gov-
erned by the analysis of the previous section.
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Appendix: Modeling rare events
Denote the event of the underlying phenomenon’s oc-
curence by R. Suppose there are n nodes in the region
on interest. Let Xi, i = 1. . . . , n be the event that node
i senses R. Let p(Xi|R) = p1 be the conditional prob-
ability of the nodes registering the event r given that
it happens. Let p(Xi|R̄) = p2 be the noise probability
of an event being wrongly detected (ideally, p1 is much
larger than p2). Let pr denote the probability of the
rare event R.

Suppose that the receiver uses threshold c to deter-
mine whether the event occured or not. Denote by Y
the event of deciding that R occured. The receiver as-
sociates utilities u1, u2, u3 and u4 with the events Y |R,
Y |R̄, Ȳ |R, and Ȳ |R̄, where by Ā we mean the comple-
ment of event A. The utility achieved for a given value
of the threshold c,

U(v, c) = u1P (Y |R)pr + u2P (Y |R̄)(1 − pr) +
u3P (Ȳ |R) + u4P (Ȳ |R̄)

= u1pr + u4(1 − pr) + pr(u3 − u1)P (Ȳ |R) +
(1 − pr)(u2 − u4)P (Y |R̄).

Suppose initially that v = 1, then P (Ȳ |R) =∑c−1
i=0

(
n
i

)
pi
1(1− p1)n−i, and P (Y |R̄) =

∑n
i=c

(
n
i

)
pi
2(1−

p2)n−i.
Consider what happens when we have a visibility

v < 1. Now the analysis depends on the protocols used.
One option is to say that on average, with a visibility
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of v, nv messages reach the receiver: in this case, we
replace n by nv. Alternately, messages could be sent
only if the node detected the presence of the rare event:
in this case, we replace p1 and p2 with p1v and p2v.

Now consider the question of choosing the optimal
threshold. Let u11 = pr(u3−u1) and u22 = (1−pr)(u2−
u4). To find c that maximizes U(v, c), we first find the
(non-integer) i that solves

u11(ni)pi
1(1 − p1)n−i = u22(ni)pi

2(1 − p2)n−i

⇒ [
p1(1 − p2)
p2(1 − p1)

]i =
u22(1 − p2)n

u11(1 − p1)n

⇒ i =
log(u22(1−p2)

n

u11(1−p1)n )

log(p1(1−p2)
p2(1−p1)

)
, (20)

which is the intersection of the corresponding contin-
uous binomials. We can then appropriately round i
(i.e., by choosing the larger of U(v, �i�) and U(v, 	i
))
to obtain the optimal c.
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